2010 FEL Conference

#### U V S O R F A C I L T Y

# Radiation from Laser-modulated and Laser-sliced Electron Bunches in UVSOR-II

#### Masahiro KATOH

自然科学研究機構 分子科学研究所 極端紫外光研究施設

#### **UVSOR-II Storage Ring and SR Beam-lines**



Electron Energy 750 MeV, Circumference 53 m







#### UVSOR Facility, Institute for Molecular Science Okazaki, Japan



# Coherent Synchrotron Radiation from Ultra-short e-Bunch

Normal Synchrotron Radiation



Coherent Synchrotron Radiation from Ultra-short e-Bunch









#### **First Observation of CSR**

UTE FOR MOLECULAR SCIENCE



http://www.lns.tohoku.ac.jp/index.php

Nakazato et. al., PRL63 (1989)1245



 $\mathbf{Y}$ 



# **Coherent Synchrotron Radiation from Long Electron Bunches ?**

# $\sigma_z < \lambda \implies CSR$

# $\sigma_z > \lambda \implies \text{No CSR}?$







# **THz Bursts at UVSOR-II**

S

Y. Takashima, M. Katoh, M. Hosaka, A. Mochihashi, S. Kimura, T. Takahashi, Jpn. J. Appl. Phys. 44 (2005), L1131



# What is THz Burst?

- Very common phenomena in storage rings (MAX-I, NSLS-VUV, SURF, ALS, BESSY, UVSOR-II, NewSUBARU.....)
- CSR due to micro-density structure created by instability

S

(e.g. G.Stupakov & S.Heifets, PRSTAB 5, 054402, 2002)



**Electron Bunch Shape** 

# **Coherent Synchrotron Radiation**

SR Power emitted by an electron bunch



$$P(\lambda) = P_0(\lambda) \left[ N_e + N_e(1 + N_e) F(\lambda) \right]$$

$$F(\lambda) = \left(\int \cos(2\pi z / \lambda) S(z) dz\right)^2$$

N<sub>e</sub>~10<sup>10</sup>

 $P_0(\lambda)$ ; SR power from single electron  $N_e$ ; Number of electrons in a bunch  $F(\lambda)$ ; Form factor of electron bunch S(z); Longitudinal density distribution of electron bunch

A long e-bunch can radiate coherently when its form factor has non-zero value at the wavelength.

# **Laser Bunch Slicing**

A.A. Zholents, M.S. Zolotorev: Phys. Rev. Lett. 76, 912 (1996)







#### **Laser-Electron Interaction in Undulator**



INSTITUTE FOR MOLECULAR SCIENCE

 $\mathbf{Y}$ 



S

IJ

#### **Formation of Dip Structure**





SOR FACILITY





# **Main Parameters**

#### **Storage Ring**

Beam Energy Beam Current

Bunch Length Natural Emittance Natural Energy Spread Revolution Frequency 600 MeV <100 mA (Single Bunch) 161 ps 17.5 nm-rad  $3.4 \times 10^{-4}$ 5.64 MHz

#### Laser

| Vavelength      | 800 nm            |
|-----------------|-------------------|
| Pulse Energy    | 2.5 mJ            |
| Pulse Duration  | 130 fs – 300 psec |
| Repetition Rate | 1 kHz             |

#### **Optical Klystron**

| Period Length     | 110 mm |
|-------------------|--------|
| Number of Periods | 9 + 9  |
| K Value           | 6.18   |
| N <sub>d</sub>    | 45     |



V S O R F A C I L I T

#### **Terahertz CSR** by Laser Slicing at UVSOR-II

M. Shimada, M. Katoh, S. Kimura, A. Mochihashi, M. Hosaka, Y. Takashima, T. Hara, T. Takahashi,



 $4\,10^{5}$ 

 $3 \, 10^5$ 

 $2\,10^5$ 

Intensity per Pulse

#### THz CSR Field Detection by EO Sampling Method at UVSOR-II



V S O R F A C I L T

#### THz CSR by Double Pulse Injection (by accident) at UVSOR-II



S



# Coherent Synchrotron Radiation from Micro-bunched e-Beam

Normal Synchrotron Radiation



Coherent Synchrotron Radiation from Ultra-short e-Bunch

> Coherent Synchrotron Radiation from Microbunched e-Bunch









#### **CSR from Laser-modulated e-Bunch**



#### Amplitude-modulated Laser Pulse by Chirped Pulse Beating at UVSOR-II







V S O R F A C I L I

#### **Formation of Periodic Micro-structure**



UTE

FOR MOLECULAR SCIENC

 $\mathbf{Y}$ 



#### Monochromatic & Tunable THz CSR from Bending Magnet at UVSOR-II

not from Undulator !



Less beats with shorter pulse duration (~ 2ps)

More beats with longer pulse duration (~ 60ps)



#### **Broadband and Narrowband THz CSR**



INSTITUTE FOR MOLECULAR SCIENCE

S

I

С

Y

#### Turn-by-turn Measurement of THz CSR by Laser Slicing at UVSOR -II

M. Shimada, M. Katoh, M. Adachi, T. Tanikawa, S. Kimura, M. Hosaka, N. Yamamoto, Y. Takashima, T. Takahashi, Phys. Rev. Lett. 103, 144802 (2009)

 $\mathbf{Y}$ 

24



INSTITUTE FOR MOLECULAR SCIENCE



#### Longitudinal-Transverse Coupling in Laser Slicing

M. Shimada, M. Katoh, M. Adachi, T. Tanikawa, S. Kimura, M. Hosaka, N. Yamamoto, Y. Takashima, T. Takahashi, Phys. Rev. Lett. 103, 144802 (2009)





25

#### CSR Emission during FEL Oscillation in Q-switching mode at UVSOR-II



S

#### CSR Emission during FEL Oscillation in Q-switching mode at UVSOR-II(cont.)

Why THz-CSR by Long (~100 psec) FEL Pulse?

S S



Sub-picosecond Micro-structure in Q-switch FEL Pulse?

#### CSR Emission during FEL Oscillation in Q-switching mode at UVSOR-II(cont.)



#### **SUMMARY and PROSPECTS**

- We can control wavelength, amplitude, phase, bandwidth, number of cycles... of synchrotron radiation by laser modulation technique.
- Possibility to sustain micro-density structure and CSR emission for many revolutions?
- Laser modulation technique on ERL for ultra-high power CSR source?
- Users application using VUV-CHG + THz-CSR?

>

#### New Straight Section for Source Development at UVSOR-II



STITUTE FOR MOLECULAR SCIENCE

30

#### New Straight Section for Source Developments <sup>3</sup> CSR, CHG, FEL, LCγ ...





31

# **Thank You**

#### **COWORKERS:**

M. Adachi, H. Zen, S. Kimura, T. Tanikawa, Y. Taira, M. Hosaka, N. Yamamoto, Y. Takashima, T. Takahashi, T. Hara, A. Mochihashi, M. Shimada, S. Bielawski, C. Szwaj, C. Evain, M. Le-Parquier J. Yamazaki, H. Hayashi, E. Nakamura





