Characterization of Second Harmonic Afterburner Radiation at the

Franz-Josef Decker Yuantao Ding Paul Emma Alan Fisher Joe Frisch Zhirong Huang Rick Iverson Yurii Levashov Henrik Loos Mark Messerschmidt <u>Heinz-Dieter Nuhn</u> Daniel Ratner James Turner James N. Welch Zack Wolf Juhao Wu

Presented at the

32nd International Free Electron Laser Conference

- MMX Sweden -

Thursday, August 29, 2010

Utilizing the Micro-Bunched Electron Beam

- At FEL saturation, the electron beam is highly micro-bunched at odd and even harmonics.
- Adding extra undulators (resonant at any of these harmonics but with different parameters) can be used to produce an additional <u>FEL quality</u> photon beam with properties such as
 - Enhanced harmonics content
 - Various types of planar and circular polarization (fundamental or 2nd harmonic)

R. *Bonifacio*, L. De Salvo Souza, P. Perini and E.T. Scharlemann, *Nucl. Instr. Meth. A* **296** (1990), p. 787 W.M. Fawley, H.-D. Nuhn, R. Bonifacio, E.T. Scharlemann, in Proceedings of the 1995 Particle Accelerator Conference, p. 219

- Those extra undulators are generally referred to as "After-Burners", AB.
- The After-Burner concept is being tested at the LCLS in the form of a Second Harmonic After-Burner (SHAB).
 Z. Huang and S. Reiche, in Proceedings of the 2004 FEL Conference, 201-204

Testing the After-Burner Concept

- In the LCLS, saturation occurs well before the end of the undulator even at the shortest wavelength.
- The last 10 of the 33 LCLS undulator segments have been set aside for the SHAB test.

existing LCLS undulator

Testing the After-Burner Concept

- In the LCLS, saturation occurs well before the end of the undulator even at the shortest wavelength.
- The last 10 of the 33 LCLS undulator segments have been set aside for the SHAB test.

16 keV = 0.75 Å (up to 20 keV = 0.62 Å at 15 GeV)

existing LCLS undulator

2nd harmonic after-burner

Presently, the last 5 undulator segments (U29 – U33) have been converted to SHABs

Expected Second-Harmonic Afterburner Yield

K Requirement

Gap Requirement

Gap Change Visualization

LCLS Undulator Phase Scheme

Undulator Roll-Away and K Adjustment Function

First SHAB Undulator Installed and Tested

- Gap of one undulator was increased and installed in slot U33 on 12/9/2009.
- Beam measurements done with the K-Mono

Installation and Test Schedule

- December 9, 2009
 SHAB U33 installed and tested @ 8.2 keV SHAB energy
- January May 2010 SHABs U29 – U32 modified, tuned, and installed
- May 2010 August 2010 SHABs commissioned as discussed in this talk
- Three more SHABs are ready to be installed
- Presently a maximum of 10 SHABs is considered
- Next steps are not yet decided

Diagnostics

- No absolute intensity measurement available (relying on eloss)
- Use various filters, attenuators, slits, YAG screens
- See talk by J. Welch (FROAI1) for discussion of x-ray diagnostics

LCLS SHAB Characterization Page 13

SXR Spectrometer

P3S2 YAG

Setup Steps

- Start with BBA (all undulator segments inserted)
- Set electron energy to target energy
 - 4.3 GeV (for 900 eV / 1800 eV) 2 keV 3rd harmonic mirror cutoff
 - 6.2 GeV (for 4096 eV / 8192 eV) K-Mono
 - 14.2 GeV (for 9000 eV / 18000 eV) Zr K edge
- Setting a linear taper
- Remove SHABs
- Adjust electron energy to set 2nd FEL harmonic to exact energy
- Insert 1 SHAB at a time and scan K and set to optimum
- Measure saturation point and set desired number of bunching undulators

Diagnostics for SHAB Energy = 8192 eV

- Use K Mono to remove fundamental and third harmonic.
- Use NFOV (Direct Imager) for observation.
- > PROBLEM:

K Mono very difficult to adjust

As example of use see K scan of U33, in earlier slide

Diagnostics for SHAB Energy = 18000 eV

Use Zr/Si foil to remove fundamental.

➤ Use deflection on HXR mirror pair to remove 3rd harmonic.

➤ PROBLEM:

HXR mirrors are too small for the beam.

They are difficult to align to guarantee good 3rd harmonic suppression.

MD time too short to change machine energy from <2keV operation and tune.

Zr + Si Spectrum

YAGXRAY vernier scan across Zr K edge

U01:U33; SHAB at optimum 6/29/10 taper

Bend energy 14.232 GeV

Background subtraction effectively removed nonbeam background.

Above K edge intensity from 3rd harmonic and leakage is quite low.

Observing SHAB Beam on YAGXRAY after Zr/Si

U1-33 all in (28+5 SHABs)

LCLS SHAB Characterization Page 19

18 keV SHAB Energy

Diagnostics for SHAB Energy = 1800 eV Beam

Remove third harmonic three consecutive mirrors (each with 2 keV cutoff) \geq

LCLS SHAB Characterization Page 20

P3S2 YAG

GainLength Gui

Harmonic Bunching

Adjust number of regular undulators to optimize 2nd harmonic microbunching in SHABs. Granularity is given by Segment Distance.

Debunching in SHABs due to Undulator R_{56} J. Wu

- The FEL induced energy spread in the regular undulator is heating the electron beam

 - SHABs have an R_{56} In an undulator $R_{56} = -\frac{K^2 L_u}{2\gamma_0^2} \approx -2N_u \lambda_r$
 - When the R_{56} of the SHABs spreads electrons by more than $\lambda_r/4$, the microbunching, built in the regular undulator, diffuses in the SHABs $R_{56} \frac{\Delta \gamma}{\gamma} \approx \frac{\lambda_r}{4} \Longrightarrow N_u \approx \frac{1}{8\Delta \gamma/\gamma} \approx \frac{1}{8\rho}$
 - Take $\rho = 5 \times 10^{-4} \rightarrow N_{\mu} \sim 250 \rightarrow about 2$ SHABs
 - Of course, one can **taper** the SHABs to use more segments
 - **Higher** energy FEL can have **more** SHABs, since ρ is smaller
- The ratio of energy spread to bunching amplitude can be improved with a dispersive section acting on the presaturated bunch. (similar to HGHG scheme) L.H. Yu, Phys. Rev. A 44, 5178 (1991)

Debunching in SHABs due to Undulator R_{56} J. Wu

- The FEL induced energy spread in the regular undulator is heating the electron beam

 - SHABs have an R_{56} In an undulator $R_{56} = -\frac{K^2 L_u}{2\gamma_0^2} \approx -2N_u \lambda_r$
 - When the R_{56} of the SHABs spreads electrons by more than $\lambda_r/4$, the microbunching, built in the regular undulator, diffuses in the SHABs $R_{56}\frac{\Delta\gamma}{\gamma}\approx\frac{\lambda_r}{4}\Longrightarrow N_u\approx\frac{1}{8\Delta\gamma/\gamma}\approx\frac{1}{8\rho}$
 - Take $\rho = 5 \times 10^{-4} \rightarrow N_{\mu} \sim 250 \rightarrow about 2$ SHABs
 - Of course, one can **taper** the SHABs to use more segments
 - **Higher** energy FEL can have **more** SHABs, since ρ is smaller
- The ratio of energy spread to be noting amplitude can be improved with a diagone in this experiment of acting on the presentation of the presen 5178 (1991)

Predicted SHAB Performance

SHAB Gain Curve on Direct Imager

1800 eV SHAB Energy

- First three data points are Und 26-28 (mostly 3rd harmonic)
- Last five are SHABs (increase due to 2nd harmonic bunching)

Eloss Scans P. Emma

Kick electron beam transversely to destroy FEL and micro-bunching at selected point. Measure energy loss at dump BPM

LCLS SHAB Characterization Page 27

1800 eV SHAB Energy

More Exotic Eloss Scans

SHAB Taper improves 2nd harmonic signal by a factor of 2

1800 eV SHAB Energy

SHAB Signal on P3S2 YAG

CONSTANT TAPER

SHAB Taper improves 2nd harmonic signal by a factor of 2

1800 eV SHAB Energy

SHAB Signal on P3S2 YAG

EXTRA SHAB TAPER

Turning off the heater kills SHAB signal

Shows that SHABs act on microbunching; also demonstrates the importance of the Laser Heater

Summary

- Five SHABs generate ~0.1 mJ of 2nd harmonic power at 1.8 keV (barely detectable with E-loss method)
- Found increasing power over all five SHABs
- Reasonable agreement with simulations
- Signal is sensitive to Laser Heater setting
- Found that SHAB intensity at 18 keV (14.2 GeV) exceeds that of 3rd harmonic at same photon energy (11.6 GeV) by at least factor 2
 - Measurement was suggested by J. Frisch
 - This factor should increase to 10+ if more SHABs are installed and betafunction is reduced.
- More SHABs are ready to be installed
- May wait until somebody can use the radiation before we install them

THANK YOU FOR YOUR ATTENTION!

End of Presentation

