

Laser-wakefield accelerators as drivers for undulator-based lightsources

Matthias Fuchs

32nd International FEL Conference Malmö, 26.08.2010

Co workers

Institute	Name(s)	Task
LUDWIG- MAXIMILIANS- UNIVERSITÄT MÜNCHEN	R. Weingartner, J. Osterhoff, A. Popp, Zs. Major, S. Karsch , F. Krausz , <u>F.Grüner</u>	FEL team electron acceleration laser development
Forschungszentrum Dresden Rossendorf	U. Schramm	undulator & mini-quad design
PSI	S. Reiche	FEL simulations
DESY	W. Decking, T. Limberg, H. Schlarb, M. Dohlus, K. Flöttmann, C. Gert, B. Schmidt, J. Rossbach	diagnostic, space-charge, wakefields, FEL physics
BESSY	A. Meseck, J. Bahrdt, A. Gaupp	full FEL simulations, cryogenic undulator
D xford hysics	T. P. Rowlands-Reese, S.M. Hooker	electron acceleration
DESIRCELEY LAN	C. Schroeder, E. Esarey, B. Fawley, W. Leemans	FEL design study staged acceleration

Outline

- Laser-Wakefield Acceleration
 - the basics
- Spontaneous Undulator Source Driven by Laser-Wakefield Accelerated Beams
 - experimental results
- Laser-wakefield Acceleration
 - the dirty details and problems
 - improvement of the beams

Laser-wakefield acceleration World-wide Research Activities

M.Fuchs, LWFA-driven lightsources

Laser-wakefield electron acceleration

laser

power: ~ TW to PW energy: ~ J pulse length: ~ 5-50 fs gas jet or capillary: plasma

 laser ionized atoms as it moves through the gas

M.Fuchs, LWFA-driven lightsources

Thursday, August 26, 2010

simulation: courtesy J. Osterhoff

Outline

Laser-wakefield Acceleration the basics

Spontaneous Undulator Source Driven by Laser-wakefield Accelerated Beams

- experimental results
- Laser-wakefield Acceleration
 - the dirty details and problems
 - improvement of the beams

Experimental setup: LWFA

M.Fuchs, LWFA-driven lightsources

35 fs

M.Fuchs, LWFA-driven lightsources

M.Fuchs, LWFA-driven lightsources

M.Fuchs, LWFA-driven lightsources

M.Fuchs, LWFA-driven lightsources

M.Fuchs, LWFA-driven lightsources

M.Fuchs, LWFA-driven lightsources

$$n_e = 7.3 \cdot 10^{18} \mathrm{cm}^{-3}$$

MF et al., *Nature Phys.* **5**, 826 (2009)

Chromatic effects of the Magnetic Lenses

Electron beam envelopes for different energies

undulator beam size:

on-axis flux:

tuning by moving the lens' position:

changing the response curve

M.Fuchs, LWFA-driven lightsources

Properties of the Undulator Source

- stable operation: detected undulator spectra in 70 % of consecutive laser shots
- tunable in wavelength by changing lens' positions
- on-axis peak intensity: 10,000 photons/(shot mrad² 0.1%b.w.)
 - (I pC charge in effective spectrum)
- pulse duration expected to be few 10 fs
- perfectly synchronized to the laser (pump-probe experiments)

Outline

- Laser-Wakefield Acceleration
 the basics
- Spontaneous Undulator Source Driven by Laser-Wakefield Accelerated Beams
 - experimental results
- Laser-wakefield Acceleration
 - the dirty details and problems
 - improvement of the beams

Typical requirement on laser for bubble regime: (from theory and PIC simulations)

- (plasma density: 10¹⁸ cm⁻³)
- Laser Power: >200 TW
- PIC simulation: 300 pC with 1.5 GeV
 -> ≈ 500 mJ energy in electron beam
- Efficiency (laser -> electron beam): 10 15 %
- need >5 J energy in laser pulse (new technology)
 -> (Simulation: 200 TW -> 6J, 30 fs)

W. Lu et al., Phys. Plasmas, 7 (2009)

Most high-power laser system have pulses with less energy -> have to rely on highly nonlinear laser-plasma interactions that increase laser intensity

Bubble Acceleration: The Details

Bubble Acceleration: The Dirty Details

- transverse injection: large emittance
- self-injection in bubble regime
 - -> no well-defined injection point (due to highly nonlinear modulations)
 - -> termination of acceleration at different points in the acceleration phase
- => shot-to-shot variation in energy and energy spread
- sometimes even continuous injection (injection at all accelerating phases)
 -> large energy spread

M.Fuchs, LWFA-driven lightsources

- Electron energy
- Charge
 10 pC
 100 pC
- Energy spread
 5% \ 1%
- Shot-to-shot stability (pointing, energy, ...)

which parameters are left?

- bunch duration
- emittance

 τ <10 fs \mathcal{E}_n <1 mm mrad

200 MeV >1 GeV

- control over injection: well defined injection (no continuous injection)
- no transverse injection
- promise to improve: energy spread, emittance, stability

Path to Laser-Driven Lightsources

over last few years: stable (from our point of view) LWFA electron beams in many labs -> in terms of charge, pointing, divergence, energy