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OUTLINE

Concepts
- Suppression of electron beam shot-noise
- Suppression of radiation spontaneous emission from e-beam

Fundamental Issues

- Shot-noise suppression and thermodynamics
- Sub-radiance (Dicke)
- Fundamental coherence limit (Schawlow-Townes limit for FEL)

Practical Issues

- e-beam quality requirements

- Dependence on radiation wavelength

- Implication to beam (micro-bunching) instability, diagnostics (COTR)
- Implication to coherence of seeded FEL
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N the usual treatment of spontaneous radiation by
a gas, the radiation process is calculated as though
the separate molecules radiate independently of each
other. To justify this assumption it might be argued
that, as a result of the large distance between molecules
and subsequent weak interactions, the probability of a
given molecule emitting a photon should be independent
of the states of other molecules.
‘This simplified picture overlooks
the fact that all the molecules are interacting with a
common radiation field and hence cannot be treated as

independent. The model is wrong in principle and many
of the results obtained from it are incorrect.

dP,/dwoc N Spontaneous emission (radiation noise)
dP. /do)aN — N? Super-radiance (coherent emission)

dP,/do{(aN — 0 Sub-radiance



New Physics of Collective Micro-Dynamics in a Charged
Particle Beam:

« Spatially coherent Coulomb interaction micro-dynamics.

« Yet unobserved effects of particle self-ordering and current shot noise
suppression at optical frequencies.




3-D Homogenization Trend

A simple physical argument:
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Answer: Always!
(if K> 1 in asphere of diameter 2r,>n,173)

Note: Process leads to velocity spread growth



Expansion of a Sphere Shaped Bunch of Uniformly
Distributed Charges in Time Period t=m/20,
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Conditions for a Charged-Particle Beam to Exhibit
Spatially-Coherent Current Shot-Noise Suppression:
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1. Cold beam: current shot-noise dominated (non-equilibrium plasma!)
2. Longitudinal interaction (single Langmuir mode)
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ANALYTICAL FLUID-PLASMA
LINEAR MODEL

[A. Gover, E. Dyunin, PRL 102, 154801 (2009)]

[H. Haus and F. N. H. Robinson, Proc. IRE 43, 981 (1955)]



Coherent Plasma Oscillation
IN an e-Beam Drift Section
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3D GPT Results of Simulations

Simulation Parameters ( FERMI):
E= 100 [MeV], R=1 [mm], | = 80 [A]

Current Noise VS Time 5 Simulations
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Charge Density Homogenization —
Axially Filtered 5-10 [um]

Simulation Parameters ( FERMI 60k m.p):
E= 100 [MeV], R=1 [mm], | = 80 [A]

III.IIIS_3 0.055 0.06 0.065

(NP e e s S 1

0 Eim e A g s '

o e " z=nci20,
L o 1 e A - S e W -




SASE Power Control
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Coherent Optical Transition Radiation in LCLS/SLAC

D. Dowell, FEL Frontiers conference (Italy, Sept. 9-13, 2007)
R. Akre et al, Phys. Rev. ST-AB, 11, 030703 (2008)

Unexpected Physics! Coherent OTR after
35-degree Bend, Even With No BC1
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Initial condition: Current Noise
Dominates Velocity Noise
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For LCLS injector parameters:

E =135MeV I, =100,m

Q = 0.5nc/5pS A =100nm —-1zm
g, =0.5um L, =x/26, = 4.4m

AE = 5keV N_ =19%x10°°
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Fundamental “Schawlow-Townes” Coherence Limits of
“Equivalent Radiation Noise Power” Input into SASE FEL
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Conclusions

It is possible to adjust the e-beam current shot- noise
level by controlling the longitudinal plasma oscillation

dynamics.

It may enable to control microbunching instability in
transport line.

It can be used to enhance FEL coherence and relax
seeding power requirement.

After elimination of shot noise, FEL coherence Is

limited by beam energy spread, and ultimately by
quantum input noise: dP/dw=hw.





