XFEL/SPring-8 Construction and SCSS EUV Laser Operation Status

Tsumoru Shintake

as representing Joint XFEL/SPring-8 Construction Team

R&D Technical Director XFEL/SPring-8 Chief Scientist RIKEN SPring-8 Center

Status of XFEL/SPring-8 Construction

	FY'06	FY'07	FY'08	FY'09	FY.	10	FY'11
Building	-	Accelerator ⁻ Undulator Ha	Tunnel	Experimer Hall			
Accelerating structures and waveguide systems	E	D F	roductio	Installat	ion →		
Klystrons and modulators	Klystro Mo	n dulator	Producti	on Install	ation		
Control cabinets and low level rf systems		+	Produ	iction Instal ◀	lation	1	eam
Undulators				Productic Inst ◀	on allatic	on ►	t X-ray Bo
Beam Commissioning		Hi	gh power Beam	rf proces Commis	sing sionir	↔ ng ∢	Firs

SPring-8/XFEL and SCSS

Technology Transfer Thermionic Gun, injector, etc. January 2010

SPring-8 Operating twelve years

XFEL/SPring-8 Beam commissioning will start March 2011

SCSS Test Accelerator Since 2006, EVU user facility

50 m Experimental Hall

200 m Undulator Hall

400 m Accelerator Tunnel

Klystron Gallery

Machine Assembly Hall

Excavating 17 m deep at undulator area, replaced with crashed stones on base rock, which took 8 month. Only -1.7 mm vertical movement was observed for 2 year after completion. Extremely stable basement was made for undulator hall.

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

Temperature Regulation 1 deg was achieved for Non-under Ground Tunnel

April, 2010

Experimental Hall

SCSS/XFEL Status April, 2010

Beam Lines

Beamline 5 beamlines (final) Start from BL3 (XFEL) & BL1 (SX)

4 Experimental Hutches EH1: R&D

EH2: Pump & Probe EH3: Imaging EH4: Open hutch Laser booth

Laser booth (CPA, OPA)

SX

BL3

HX

SX HX HX

7 m

相互利用基盤 XFEL+SR

Experimental Hall, 4 Hutches are ready

SCSS/XFEL Status April, 2010

X-ray Beam Line Front-End Mirrors

April, 2010

Isumoru Shintake shintake@spring8.or.jp

shintake@spring8.or.jp

Accelerator installation

Tsumoru Shintake shintake@spring8.or.jp

SCSS/XFEL Status April, 2010

WEOC3 T. Inagaki, "Construction of 8-GeV C-band Accelerator for XFEL/SPring-8", SCSS/AFEL Status April, 2010

C-band Accelerator for Multi-bunch Option

T. Shintake, "Choke Mode Cavity", Jpn. J. Appl. Phys. Vol. 31 pp. L1567-L1570, November 1

Higher Order Mode Damping for Multi-bunch operation. Maximum 50 bunches x 1 nC, at 4.2 nsec spacing

X-ray 4.2 nsec x 50 bunches will be key for Single bio-molecule imaging to improve Luminosity.

13,000 cells are under mass production.

Sadao Miura, MITSUBISHI Heavy Ind, April 20

Testing Modulator & Klystron

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

Tsumoru Shintake shintake@spring8.or.jp

May 2010

222

SCSS/XFEL Status April, 2010

SCSS : SPring-8 Compact SASE Source

Beam Acceleration and Compression

Expected Performance of XFEL/SPring-8

Use Small Size Cathode

SCSS/XFEL Status April, 2010

CeB6 Thermionic Electron Gun K. Togawa

Cathode Assembly

Heated Cathode in Stem

The gun voltage=500 kV Temperature was measured at the sleeve by a radiation monitor.

SCSS/XFEL Status April, 2010

Tsumoru Shintake shintake@spring8.or.jp

Operational Experience of 500 kV Gun

■Applying 500 kV pulse.

■3 micro-sec pulse driven by klystron modulator.

Gun sits inside HV pulse tank, filled with oil.

No HV breakdown at 500 kV for 4 years, daily operation.

Measured Emittance at the Gun

Beam Profile

Doom onorgy	500 koV
Dealin energy	JUU KE V
Peak current	I A
Pulse width (FWHM)	3 µs
Repetition rate	10 Hz
Normalized emittance (rms, 100% electrons)	1.1π mm mrad
Normalized emittance (rms, 90% electrons)	0.6π mm mrad

Phase Space Profile

SCSS Test Accelerator Performance

238 MHz

buncher

2006 First lasing at 49 nm
2007 Full saturation at 60 nm

- 2007 Full Saturation at 60 mm
- 2008 User operation stat

500 kV Pulse electron gun CeB6 Thermionic cathode Beam current 1 Amp. 476 MHz booster S-band buncher E-b

E-beam Charge: 0.3 nC Emittance: 0.7 π .mm.mrad (measured at undulator) Four C-band accelerators 1.8 m x 4 Emax = 37 MV/m Energy = 250 MeV In-Vacuum Undulators Period = 15 mm, K=1.3 Two 4.5 m long.

C-band

accelerator

In-vacuum

undulator

Test Accelerator Configuration

CeB₆ Thermionic Gun provides stable beam.

Beam Profile CCD Image Scale 10 mm

250 MeV Compressor

۲

Undulator Input

Undulator Output

The slice emittance is estimated to be 0.7 μm (normalized)

It's laser light at EUV

60 nm, courtecy of Nishino.

Tsumoru Shintake shintake@spring8.or.jp

SCSS Test Accelerator User Run Has been Started in 2008

1

50~60 nm, 30 μJ/pulse Multi-photon absorption Coherent diffraction imaging etc.

Thermionic cathode & velocity buching system can generate short bunch with small jitter

Bunch length in SCSS < 50 fsec (XFEL case it will be < 5 fsec, with additonal two chicane by 1/10 compression)

Timing jitter is SCSS < 50 fsec (XFEL case it will be < 5 fsec+residual)</p>
SCSS Pulse Length Measurement with Autocorrelation using He⁺

From the width of the broad peak, we can get the FEL pulse duration. <u>FEL pulse duration ~30 fs</u> (Pulse duration = FWHM of <u>broad</u> <u>component $l\sqrt{2}$)</u>

Exp.
Fit with two Gauss. Fun.
Component one (FWHM= 11 fs)
Component two (FWHM= 47 fs)

...Kiyoshi Ueda

Timing Jitter

CSR Monitor from 3rd Magnet in chicane at 250 MeV

Measured CSR intensity and Bunch length by streak camera

H. Maesaka et al., WEPB11

- R56 = 20 mm in bunch compressor at 45 MeV.
- Incoming bunch length = 2 psec (0.6 mm)
- Max energy chirp 0.6 mm/20 mm = 3% at 45 MeV, 0.6% at 250 MeV
- Bunch compression factor x 1 ~ x 5

Thermionic Gun Produces "Smooth Beam"

No CSR instability was observed.

- OTR, CSR radiations at chicane magnet are stable, for wide range of bunch compression change.
- → conclusion: there is no density modulation on incoming bunch into chicane compressor
- \blacksquare \rightarrow thermionic cathode generates smooth beam.

We confirmed no laser heater is required in our system.

CeB6 Cathode Performance

We changed cathode twice in SCSS test accelerator.
2005 installed first cathode

- 2008 January, 1st cathode was changed.
- 2010 August, 2nd cathode was changed.
- Lifetime > 10,000 hours (~2 years)

At end of lifetime, emission decreased, but emittans is OK.

2008/01/28 *First experience, but team did nice work.*

We replaced CeB6 crystal in SCSS accelerator, after 20,000 hour operation.

Anode flange had color change.

contamination (lowered electron emission).

Electron Gun and Injector

- CeB6 Cathode: emission was tested.... OK.
- Gun: 500 kV operation in bunker....OK 2.

April, 2010

- 238 MHz, 476 MHz, L-correction, C-correction cavities and RF....OK 3.
- L-band RF is OK, but APS cavity is under fabrication. ... Waiting SCSS/XFEL Status

Otake's Team: LLRF, Beam Diagnostics

SCSS/XFEL Status April, 2010

47

Tsumoru Shintake shintake@spring8.or.jp

MADOCA Controls, LLRF, Temp Feedback, PFN Charger

SCSS/XFEL Status April, 2010

Beam Monitor Devices

BPM Calibration

By Y. Otake team.

OTR Screen Monitor

SCSS/XFEL Status April, 2010

Tsumoru Shintake shintake@spring8.or.jp

C-Band RF Deflector has been developed

- RAIDEN-Cavity
 - Race-track iris provide xy-mode separation
 - Backward HEM11-5π/6 mode

H. Ego, Y. Otake *et al.*, "Design of the Transverse Cband Deflecting Structure for Measurement of Bunch Length in X-FEL", Proceedings of EPAC'08.

Two RAIDEN structures are under high power testing.

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

All undulators (18) have been installed in Augost

.

-

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

0

Undulator for XFEL/SPring-8

Undulator Type		In-Vacuum Planer Undulator
Active Length		5 m
Undulator Period		18 mm
Magnetic Circuit		Hybrid (NdFeB+Permendur)
Peak Field	Maximum	1.31 T
	Nominal	1.13 T
К	Maximum	2.2
	Nominal	1.9
Gap	Minimum	3.5 mm
	Nominal	4.5 mm
Maximum Attractive Force		~ 6 ton

In Vacuum Undulator

Tsumoru Shintake shintake@spring8.or.jp

Undulator for XFEL/SPring-8

The undulator for XFEL is made by the team guided by H. Kitamura and T. Tanaka

Outlook of 5 m long in-vacuum undulator for X-ray FEL.

NeFeB magnet array, undulator period is 18 mm.

SAFALI Field Measurement System

- SAFALI: <u>Self-Aligned Field Analyzer with</u> <u>Laser Instrumentation</u>
 - Simple mover of hole probe.
 - » fit within vacuum chamber.
 - Laser beam guide for xy-displacement, and position feedback on guide rail.
 - Laser distance meter for z-location.

Tuning magnet and gap on site, including earth magnetic field effect.

SCSS/XFEL Status April, 2010

SAFALI in-situ field measurement

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

Summary & Schedule

2010 Sept. Complete installation.

2010 Oct. ~ 2011 Feb. High power processing.

2011 March First beam to the undulator.

2011 April - July Beam commissioning, and the first FEL Lasing?

XFEL Machine Configuration

RF Acceleration System in XFEL/SPring-8

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

C-band R&D

C-band Klystron Development

Under life test since April 1999

53 MW, 2.5 µsec, 50 pps, 47%

53 MW, 2.5 µsec 368 kV 1 µs/div 53 MW, 2.5 µsec 0.5 µs/div

TOSHIBA E3746 No.3

SCSS/XFEL Status April, 2010

Mass Production of Klystrons at TOSHIBA

- 64 C-band klystron
- 4 S-band klystron
- 1 L-band klystron

C-band Klystron 5712 MHz, 50 MW 4 μsec, 60 pps 45 % efficiency Three-cell traveling wave output

C-band System Configuration

C-band is High Gradient (35 MV/m, max 40 MV/m)

- Modulator + Control Cabinet have to fit within 3.9 m each. → Need to make "Compact Modulator"
- High packing efficiency = Active Length/ Actual Length =(1791 x 8) / (15462+806) = 0.88

Single Tank Modulator (PFN circuit + Transformer)

Tsumoru Shintake shintake@spring8.or.jp

SCSS/XFEL Status April, 2010

At the R&D, Ship Engine Make at AIOI contributed.

Suitable for mass-production.

Modulator Mass Production at NICHICON

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

Modulator Tank Fabrication

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

EOL Diode Failure Problem

Summer 2009

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

Cause was wrong connection of ground line.

HV breakdown on klystron gun. Shockwave jumps over the transformer windings, with capacitive coupling. Frequency is to high ~100 MHz, shockwave runs ground line on PFN. It reflects back at EOL side as open end, creates standing wave. EOL diode turns ON very short time, then voltage reverses quickly. Before the carrier extinction time, voltage reverses, and charge remains in depletion region with high field. Charge is accelerated and hit anode!

First Modulator was Installed.

Summer 2009

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp
Highly Stable Inverter Type PFN Charger for stable operation of XFEL.

Highly stable PFN charger < 100 PPMp-p High power capacitor charging system.

- 1.8 Apeak at 50 kV
- Pulse to Pulse < 100 ppm.pp</p>
- Main Switching at 20 kHz, IGBT
- Sub switiching at 80 kHz, FET

SCSS/XFEL Status April, 2010

When voltage approaches to target, sub-inverter controls the voltage in fine mode.

Achieved PFN Charging voltage stability
80 ppm (peak-peak) for 1 minute
190 ppm (peak-peak) for 8 hours.

Brazing of C-band Accelerators

•A number of technical improvements have been made.

•1~2 columns per week.

Tsumoru Shintake shintake@spring8.or.jp

Mass-production of 128 tubes of the C-band Accelerating Structure for 8 GeV linac. @ MITSUBISHI Heavy Ind.

SCSS/XFEL Status April, 2010 T

Tsumoru Shintake shintake@spring8.or.jp

MITSUBISHI-Team completed 100 tubes (out of 128) C-band Accelerator. Photo March 2009

SCSS/XFEL Status April, 2010

Routinely Operation: C-band High Gradient Test

T. Sakurai, IPAC2010 19-inch rack **RF Pulse Compressor** Control system Low-Level RF Timing system Beam Dump Faraday Cup) **Compact Modulator Pulse** klystron C-band Accelerating structure

Fig.2 Birds'eve view of the test bunker.

- Sample test from mass production.
- C-band 1 unit for one month.
- 35 MV/m is routinely achieved. (Very low trip rate.)
- Processing up to 40 MV/m, 60 pps.

RF Pulse Compressor $Q_0 :> 180000, \beta :> 8.0$ Two TE0,1,15 cavities **RF power Gain : (typ.) 3**

Installed C-band Accelerator

Tsumoru Shintake **SCSS/XFEL Status**

April, 2010

shintake@spring8.or.jp

C-band Accelerator

Pulse Compressor Gain x3

Choke Mode Structure 35 MV/m x 1.8 m

A Marine

Choke Mode Structure 35 MV/m x 1.8 m

SCSS/XFEL Status April, 2010 Tsumoru Shintake shintake@spring8.or.jp

F

Summary

- CeB6 thermionic performance was fully investigated, and found to be matched to XFEL/SPring-8.
- Various new hardware components have been developed in this laboratory, LLRF, single-tank klystron modulator, high precision power supply, etc.
 - Those components will be useful to other accelerator projects including FELs, light source injectors and also ERLs.
- We will contribute to accomplish X-ray lasing of XFEL/SPring-8, expected Summer 2010.
- This laboratory will keep activity for future upgrade of XFEL/SPring-8.

Acknowledgement

- We would like to acknowledge to all of colleague here and also from outside for their various help and encouragements to our laboratory.
- We wish thank to people from industries for their collaborative efforts on development of all hardware components.
- We would like to say thank to people at secretaries office in this institute, and director office.