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•QE and the intrinsic cathode emittance
•Space charge emittance near the cathode
•RF contribution to the projected emittance
•Chromatic emittance of the gun solenoid
•Aberrations and field errors of the solenoid
•Summary and conclusions
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Photoemission Theory  for Metal Cathodes

In this theory the QE and intrinsic emittance are connected by the excess energy: the 
difference between the photon energy and the work function.  The greater the 

excess energy the greater the QE and the higher the intrinsic emittance.  This is also 
the case for prompt emitting semi-conductor cathodes such as Cs2Te and SbK2Cs.  

However slow emitters such as GaAs can have high QE and low emittance.

Prompt emission from the Fermi-Dirac 
energy distribution
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Comparison of QE with Thermal Emittance 
Using a Consistent Theory for Metal Cathodes
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Use QE to determine effective work function Use work function in emittance formula
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Comparison of Expt. and Theory for the Intrinsic Emittance 

C.P. Hauri et al., PRL 104,234802(2010)

QE of Copper vs. Effective Work Function
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261nm : eff  4.58 eV : n x  0.33 vs. 0.68expt.

272nm : eff  4.44 eV : n x = 0.28 vs. 0.54expt.

282nm : eff  4.30 eV : n x = 0.25 vs. 0.41expt.
261nm

282nm 272nm

Expt.-to-theory is ~2, consistent with other experiments
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Plot of data taken from I.V. Bazarov et al., 
Appl. Phy. 103 (2008)054901 and Proceedings of PAC07

Thermal Emittance and Response Time of GaAs
Lowest Intrinsic(Thermal) Emittance

Response time and emittance depend upon photon wavelength
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Due to electron-phonon scattering the delayed-emission electrons can reach thermal 
equilibrium with the lattice, giving the intrinsic emittance of GaAs a thermal-like 
emission component (given by kT) as well as prompt emission(given by the excess 
energy) part.



Cathode Surface Roughness

266 nm PEEM image of polycrystalline Cu sample  
~ 14 micron field of view, p-pol illumination

Image compliments of H. Padmore, ALS-LBNL

D. Xiang et al., PAC07, pp. 1049-1051
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Emittance Growth Due to Field Enhancement

Emittance Growth Due to Non-Uniform Emission & Field Enhancement
-Highest cathode field not necessary best emittance-
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AFM measurement 
of a sample 

cathode surface



The Brightest Beam Possible*
- How much can the LCLS gun emittance be lowered? -

20 pC Meas. in LCLS Gun at 57.5 MV/m

Assume all linear and non-linear space charge effects can be corrected/compensated for,
assume the cathode is perfectly flat and the cathode physics is correct.  Then the lower 
limit on the emittance depends on the thermal emittance for the divergence and the 
space charge limit for the beam size:
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*For GaAs see: I. Bazarov et al., 
Phys. Rev. Lett., 102 (2009) 104801
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Radial electric field outside the 
tube/beamlet of charge:

Basic Assumptions of Model
1. Charge is distributed in a regular array of tubes, beamlets.
2. Beamlets see radial space charge force until they overlap.
3. After overlapping the sc-force becomes small, the electrons are left 

with radial velocity which becomes emittance.
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definition: 

Beam consists of a rectangular array of beamlets, each driven 
outward by their radial space charge force

Integrate to get energy gain of an electron at radial edge of 
beamlet:

Gives the emittance due to the rectangular
array of beamlets:

Model for Space Charge Emittance due to Emission Non-Uniformities

~4 r0
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Optical Aberrations: Chromatic Effects of the Solenoid
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Solenoid chromatic aberration is a significant  
contributor to the projected emittance.  For a 
slice energy spread of 1 KeV, gives ~0.02 micronsAssumes 1 mm rms beam size at solenoid
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Quadrupole Field Error of Gun Solenoid
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Normal and Skew quad correctors were installed to 
compensate small quad fields at ends of gun solenoid

250 pC data

Relatively strong effect on the beam emittance,
especially at high charge.

1 nC data

Quad Correctors:
long quads on Gun1
long & short on Gun2

long quad wires

short PC quads
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“Perfect” solenoid has a small 
“pincushion” distortion. 
A 4 mm x 4 mm(FW) object 
gives 0.01 micron emittance.
Nominal beam is 1mm(rms) 
or 2 mm x 2 mm(FW) results 
in only 0.0025 microns. 
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Gun Solenoid with Quadrupole Field Errors

Model the field errors with short 
opposing quads at solenoid ends
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Emittance is 0.1/0.0025 = 40X larger 
with quad errors!
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Correcting Field Errors with Quad Correctors

Normal and skew quad correctors 
installed along the full length of the 

solenoid to compensate for the 
solenoid’s end quad fields.

These long quad correctors are very 
effective at canceling the emittance of 

the much shorter quad error fields.

Emittance after solenoid with quad errors 
vs. quad corrector field,

Initial emittance = 0
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The orientation of the total quad field is the 
vector sum of the entrance quad vector rotated 
by the solenoid plus the exit quad vector:
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Compared to a usual quad skew angle of  
<1 deg.  In this case the skew angle can be 
10’s of degrees and is determined by the 
rotation of it’s initial direction in the axial 
field.

0

0.5

1

1.5

2

2.5

3

-20

-10

0

10

20

30

40

50

60

70

80

90

-0.4 -0.2 0 0.2 0.4

q
u

a
d

ru
p

o
le

 fi
e

ld
 (

g
a

u
s

s
)

q
u

a
d

ru
p

o
le

 p
h

a
s

e
 a

n
g

le
 (

d
e

g
)

z(m)

Run 7 quadrupole angle (deg)

Run 7 quadrupole field(gauss)

field
phase

The skewed quad fields produce emittance 
growth due to coupling of the x- and y-

planes (see Paul’s talk),
and the quad correctors remove this skew:

What are the Quad Correctors correcting?
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•Cathode Intrinsic Emittance
•Self-consistent analysis of QE and emittance data indicate the theoretical emittance is factor of 
~2 lower than expt.
•Cathode surface roughness important at high cathode fields.  Less than 20 nm peak-to-peak 
required for sub-0.1 micron emittance.
•Lowest possible emittance given space charge limit  of smallest possible size on cathode and 
divergence due to intrinsic emittance.

•Transverse uniformity of laser + QE.
•Transverse non-uniformity drives the emittance during acceleration from rest to c.
•High spatial frequencies (>~50 periods/radius) are small contributors to the emittance

•RF emittance increases with charge due to longitudinal space charge
•Small for LCLS at 20 pC, ~ 0.01 microns

•Solenoid optical effects seem to be the most important (after the cathode)
•Emittance due to chromatic aberration

•@250pC the projected energy spread is 20 KeV => ~0.3 microns
•For a slice energy spread of 1 KeV => ~0.03 microns

•Emittance growth due to geometric aberrations appear to be small.
•Spherical and pincushion distortion contribute if beam is larger than 2 mm (FW)
•Coupling to space charge effects still need to be analyzed

•Solenoid field errors are important
•Skewed quadrupole field errors strongly affect emittance
•Although field errors are at ends of solenoid, long quad correctors are effective at 
canceling growth

Summary and Conclusions
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Everything is Important Below 0.1 microns!!
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