

(Non-invasive) diagnostics on FEL photon beams: general remarks and the case of FERMI@Elettra

Marco Zangrando

Istituto Officina del Materiali CNR and Sincrotrone Trieste

- Introduction
- What users want
- Layout of the transport system: where can we "diagnose" ?
- Diagnostics: Beam Position Monitors Intensity Monitors Energy Spectrometer TOF-based diagnostics Wavefront Coherence Pulse length

Conclusions

FEL Radiation Features

Common characteristics: high peak powers, pulsed structure, high

ERMI@Elettra	
--------------	--

coherence				
rarameter		FEL Z		
Wavelength (nm)	100 - 20	40 - 3		
Pulse length FW HM (fs)	30 - 100	<100		
Bandwidth rms (meV)	~20 - 40	~20 - 40		
Polarization	Variable	Variable		
Peak power (GW)	1-5	~1		
Photons per pulse	~2 10^{14} (100 nm)	~1 10 ¹³ (10 nm)		
Brightness (Ph/s/mm ² /mrad ² /0.1%BW)	~6 10 ³²	~10 ³²		
Power fluctuation (%)	~25	> 50		
Central wavelength fluctuation	Within BW	Within BW		
Pointing fluctuation (µrad)	< 5	< 5		
Source size FWHM (µm)	290	140		
Divergence rms (µrad)	50 (40 nm)	15 (10 nm)		
Repetition r ate (Hz)	10 - 50	10 - 50		

Perfect knowledge of:

Intensity Photon energy Spectral distribution Beam (angular) position Pulse length Focus size Wavefront/Coherence photons/pulse eV meV-resolution µrad fs µm-resolution

...OF EACH PULSE & DURING THE EXPERIMENT !!!

_ _ _

@elettra

Where can we put some diagnostics?

PADReS

Target: collect both FEL paths, diagnose, and redirect to the beamlines

Intensity monitor

+ or - depending on tests/noise

Calibrated with High precision IRD photodiodes (4% absolute calibration, <0.1% repeatability)

MAIN FEATURES

- ULTRA-WIDE INPUT CURRENT RANGE (from ±140 fA up to ±10 mA)
- I, 2, 4-CHANNEL MONITORING
- MULTIRESOLUTION
- o 16-BIT MODE o 24-BIT MODE
- LOW NOISE (3 ppm of Full Scale)
- LOW DRIFT (3 ppm/°C)
- MODULAR COMMUNICATION INTERFACE
 o RS-232
- o USB
- o Ethernet TCP/IP
- o Ethernet UDP
- o Wi-Fi (under test)

The I₀ monitor:

- Works online and shot-toshot
- Is transparent
- Measures the number of photons of each pulse (~3% precision, 1% reproducibility)

APPLICATIONS

- 4-QUADRANT BPM (BEAM POSITION MONITOR)
- ION CHAMBERS
- FAST FEEDBACK APPLICATIONS
- GENERIC MULTICHANNEL
- SIMULTANEOUS CURRENT ACQUISITION

Ref. E. Braidotti (CAENELS-Elettra)

The BPM:

- Works online and shot-to-shot
- Intercepts 1% of FEL radiation
- Measures the relative position of each pulse (<2 µm rms)
- Determines the angular movement of the beam (<1 µrad)

- o Ethernet TCP/IP o Ethernet UDP
- o Wi-Fi (under test)

Energy spectrometer

VLS gratings

Gratings parameters

Parameter	G1	G2
Energy range m=1 (eV)	12-30	30-120
Energy range m=2 (eV)	36-90	90-360
Energy Resolution (meV)	0.2-2.9	0.3-9.5
D0 (l/mm)	500	1800
D1 (l/mm ²)	0.35	1.26
D2 (l/mm ³)	1.7x10 ⁻⁴	6.3x10 ⁻⁴
Groove profile	Laminar	Laminar
Groove height (nm)	12	4
Groove ration (w/d)	0.60	0.65
Coating Material / Thickness	Graphite / 50 nm	Gold / 50 nm

(meV)

0,2

0,3

0,5

0,6

0,8

0,9

(µm)

3,71

4,24

4,40

4,92

4,93

4,96

E	β	r'	∆E sim	Spot
(eV)	(deg)	(mm)	(meV)	(µm)
36	16,7205	2866	0,4	4,46
48	14,5219	2904	0,8	4,95
60	13,0303	2937	1,1	4,78
72	11,9347	2966	1,4	5,33
84	11,0871	2994	2,2	5,84
90	10,7296	3008	2,4	6,30

G2 Ist order

GI Ist order

β

(deg)

20,4372

17,7203

15,8767

14,5219

13,4730

13,0303

Е

(eV)

12

16

20

24

28

30

E	β	r'	ΔE sim	Spot
(eV)	(deg)	(mm)	(meV)	(µm)
40	19,3944	2827	0,3	3,28
50	17,3668	2856	0,5	3,62
60	15,8767	2880	0,7	3,65
80	13,7959	2919	1,1	3,83
100	12,3844	2953	1,9	4,18
120	11,3479	2985	2,0	4,67

r'

(mm)

2813

2851

2880

2904

2926

2937

G2 2nd order

E	β	r'	∆E sim	Spot
(eV)	(deg)	(mm)	(meV)	(µm)
90	18,2948	2842	0,5	3,34
120	15,8767	2880	0,9	3,31
150	14,2358	2910	1,6	3,50
240	11,3479	2985	4,5	4,68
300	10,2083	3030	7,2	5,18
360	9,3728	3073	10,6	5,55

C. Svetina

Grating inspection & performances

G2

White Light Interferometer (G.Sostero)

elettra

NC-AFM measurements

36 eV -10 -5 0 10 ς 15 G1 ideal spot at 36 eV G1 expected spot at 36 eV FWHM = 5.3 um FWHM = 8.5 µm 8 8 Spot Size (mm) Vertical Spot Size (mm) 4 0 Vertical (-8 -8 -10 -5 0 5 10 -10 -5 10 15 0 5 Horizontal Spot Size (µm) Horizontal Spot Size (µm) AE=1.0meV **AE=0.6meV**

White Light Interferometer (G.Sostero)

NC-AFM measurements

i-TOF

Flight Time (μs)

Approach using a TOF- setup

A.A. Sorokin, et al., Appl. Phys. Lett. 89 (2006) 221114

Focus size /2

Wavefront

B. Flöter, et al., New J. of Phys. 12 (2010) 083015

Operates from 6 to 30 nm, pulse-to-pulse (BL2) Useful also for beamline alignment and monitoring behind endstations Used pulse: 13.8 and 25.9 nm, either attenuated or higher harmonics (BL2) Wavefront, beam profile, divergence, waist diameter and position, etc. can be ob Wavefront PV deformation: $w_{PV} \sim 14$ nm ($w_{rms} = 2$ nm)

Intensity profiles and corresponding wavefronts for 3 single

Wavefront measurements to be done at FERMI@Elettra within the IRUVX-PP European Project (FP7) - WP3

Beam splitting and delay

TASC

Coherence

Pulse length

105

R. Mitzner, et al., Phys. Rev. A 80 (2009) 025402

51.8 eV photon energy Peak intensities ~ 1.8 10¹⁴ W/cm² 5 µm-spots

Beam splitting and delay introduced. The two half-beams are focused in an ionizing region seen by a TOF spectrometer and the He²⁺ is detected.

- Photon beam diagnostics already tested on some FELs
- Existing and developing expertise worldwide
- Photon beam parameters shot-to-shot and online: intensity, photon energy, spectral distribution, position, focus size
- Photon beam parameters NOT shot-to-shot and online:

pulse length, coherence, ...

FERMI@Elettra will benefit from collaborations within M. Zangtime FEQUROF, Equation WILL PP project

- FERMI@Elettra Photon beam transport group: Daniele Cocco Cristian Svetina Claudio Fava Simone Gerusina Luca Rumiz
- ELETTRA Mechanical design group:
 Ivan Cudin
- ELETTRA Detectors & Instrumentation Group Dario Giuressi Rudi Sergo Enrico Braidotti (CAENELS)
- FERMI@Elettra Beamlines coordinators: Carlo Callegari Maya Kiskinova Claudio Masciovecchio
- FERMI@Elettra people
- IRUVX-PP people

...AND YOU FOR YOU ATTENTION !