

# Feasibility of X-ray Cavities for Hard X-ray FEL Oscillators



32nd International Free Electron Laser Conference FEL 2010 Malmö, Sweden, August 23-27, 2010.



Kwang-Je Kim (APS) Stanislav Stoupin (APS) Ryan Lindberg (APS) Deming Shu (APS) Harald Sinn (European XFEL) Vladimir Blank (TISNCM)



# **XFELO** we are considering:

It is not a machine to produce explosions

with ultra-high number of x-ray photons in ultra-short pulses





# **XFELO** we are considering:

It is not a machine to produce explosions

with ultra-high number of x-ray photons in ultra-short pulses



It is a machine for delicate studies with

high average number of ultra-high monochromatic hard x-ray photons





FEL2010, Malmö, August 27, 2010

# **XFELO** Performance $\implies$ Applications

#### **Performance:**

- fully coherent hard x-ray source
- highest average spectral brightness
- meV energy bandwidth
- ps-pulses
- $10^9$  photons/pulse
- 1 MHz repetition rate.

#### **Applications:**

- inelastic X-ray scattering (IXS)
- HAXPES
- ps-time measurements
- nuclear resonant spectroscopies
- imaging at near-atomic resolution ( $\simeq 1$  nm)
- photon correlation spectroscopy



August 27, 2010

### XFELO vs. SASE XFEL and other sources



Courtesy of K.-J. Kim & R. Lindberg

# **XFEL-Oscillator:** Is it Feasible?

#### First proposal: Colella and Luccio (1984)



FELs based on the oscillator principle are limited, on the short-wavelength side, primarily because of mirror limitations.

Free-electron lasing at wavelengths shorter than ultraviolet can be achieved with a single-pass, highgain FEL amplifier only.

(The Technical Design Report of the European XFEL, July 2007)

# Content

- XFELO principle and technical challenges
- X-ray cavity feasibility studies:
  - $\Rightarrow$  reflectivity of diamond crystals
  - $\Rightarrow$  heat load problem
  - $\Rightarrow$  nanoradian angular stabilization
  - $\Rightarrow$  radiation damage
- Conclusions and Outlook

# **XFEL** Oscillator Prerequisites



Low gain XFELO requires:

- ultra-low-emittance ( $\varepsilon_{\rm n} \simeq 0.2 0.4$  mm mrad) electron beams,
- low-loss x-ray crystal cavity (losses  $\simeq 15\%$ )  $R_1, R_2 > 95\%, T_1 \simeq 4\%$

K.-J. Kim, Yu. Shvyd'ko, S. Reicher, PRL 100 (2008) 244802.

### **Reflectivity of Si in Bragg Backscattering**



# **Theory: Highest Bragg Reflectivity from Diamond**



# Superb thermo-mechanical properties of diamond

# Ultra-high thermal diffusivity at low temperatures





# Superb thermo-mechanical properties of diamond



# Ultra-low thermal expansion at low temperatures



# **Two-crystal cavity for XFELO**





foil 11

# **Two-crystal cavity for XFELO**



#### $E = E_H \cos \Theta \implies$ Two-crystal scheme is not tunable.

Because, it is necessary to keep small  $\phi \lesssim 2$  mrad

and therefore small  $\Theta \lesssim 2$  mrad, for high reflectivity of the mirrors.

# **Tunable Cavity**



A four-crystal (A,B,C, and D) x-ray optical cavity allows photon energy E tuning in a broad range by changing the incidence angle  $\Theta$ .

R.M.J. Cotterill, Appl. Phys. Lett., 12 (1968) 403 K.-J. Kim, and Yu. Shvyd'ko, Phys. Rev. STAB (2009)

# **XFELO Technical Challenges**



#### X-ray Optics:

- Quality of diamond crystals: is the theoretical  $\simeq 99\%$  reflectivity achievable?
- Heat load problem: reflection region variations  $\lesssim 1$  meV.
- Angular stability:  $\delta heta \lesssim 10$  nrad (rms) Spatial stability:  $\delta L \lesssim 3~\mu$ m (rms)  $ightarrow ~ \delta L/L \lesssim 3 imes 10^{-8}$
- Radiation damage

# **Quality of Diamond crystals**



# **Quality of Diamond crystals**

### **Required diamond crystals:**

- high quality (dislocation free, etc.)
- thickness:  $20-2000 \ \mu m$
- small size:  $\simeq 1 \text{ mm}^2$

**Still open question:** 



is the theoretical 99-98% reflectivity achievable?



# Experiment, 30-ID @ APS



FEL2010, Malmö,



foil 16

# **Spectral Width and Reflectivity Map**





# **Spectral Width and Reflectivity Map**



Synthetic diamond crystals are available with theoretically high reflectivity and sufficiently large in size for XFELO cavity applications.



Temperature gradient  $\delta T \Rightarrow$  r.c. energy spread  $\delta E/E = \beta \delta T$ . Requirement:  $\delta E \leq 1$  meV, when the next pulse arrives.

Incident power  $\simeq 50 \ \mu$ J/pulse. Absorbed power:  $\simeq 1 \ \mu$ J/pulse (2%). Footprint:  $\simeq 100 \times 100 \ \mu$ m<sup>2</sup>

#### Is it a problem?

Temperature gradient  $\delta T \Rightarrow$  r.c. energy spread  $\delta E/E = \beta \delta T$ . Requirement:  $\delta E \lesssim 1$  meV, when the next pulse arrives.



Temperature gradient  $\delta T \Rightarrow$  r.c. energy spread  $\delta E/E = \beta \delta T$ . Requirement:  $\delta E \lesssim 1$  meV, when the next pulse arrives.



Temperature gradient  $\delta T \Rightarrow$  r.c. energy spread  $\delta E/E = \beta \delta T$ . Requirement:  $\delta E \lesssim 1$  meV, when the next pulse arrives.



#### **Solution:** Maintain diamond at T < 100 K!



Required angular stability:  $\delta\theta \lesssim 10$  nrad (rms) Required spatial stability:  $\delta L \lesssim 3 \ \mu m$  (rms)  $\Rightarrow \delta L/L \simeq 3 \times 10^{-8}$  ( $L = 100 \ m$ )

Required angular stability:  $\delta\theta \lesssim 10$  nrad (rms) Required spatial stability:  $\delta L \lesssim 3 \ \mu$ m (rms)  $\Rightarrow \delta L/L \simeq 3 \times 10^{-8}$  (L = 100 m)

**Solution:** Null-detection hardware feedback. (LIGO prototype)



X-ray intensity: linear response to small angular oscillations is proportional to angular deviation from the maximum of the rocking curve.

Required angular stability:  $\delta\theta \lesssim 10$  nrad (rms) Required spatial stability:  $\delta L \lesssim 3 \ \mu m$  (rms)  $\Rightarrow \delta L/L \simeq 3 \times 10^{-8}$  ( $L = 100 \ m$ )

**Solution:** Null-detection hardware feedback. (LIGO prototype)



X-ray intensity: linear response to small angular oscillations is proportional to angular deviation from the maximum of the rocking curve. <u>Feedback:</u> correction signal is extracted using lock-in amplification.

## **HERIX Monochromator Stability Region**





### **HERIX Monochromator Stabilization**



X-Ray Cavities for XFELO Yu. Shvyd'ko

### **HERIX Monochromator Stabilization**



### Radiation damage in diamond



# Radiation damage in diamond

**XFELO** generates:

 $50\mu$ J/pulse @ 12 keV with  $\simeq 1$  MHz rep. rate Footprint:  $A = 1.6 \times 10^{-2}$  mm<sup>2</sup> (rms) Flux  $\simeq 2 \times 10^{18}$  ph/s/mm<sup>2</sup>  $\simeq 4$  kW/mm<sup>2</sup>

Time to ionize carbon atom with 100% probability:  $T \simeq 250$  s Robin Santra

Can this produce irreversible changes in the perfect crystal lattice structure?



# Radiation damage in diamond

#### **XFELO** generates:

 $50\mu$ J/pulse @ 12 keV with  $\simeq 1$  MHz rep. rate Footprint:  $A = 1.6 \times 10^{-2}$  mm<sup>2</sup> (rms) Flux  $\simeq 2 \times 10^{18}$  ph/s/mm<sup>2</sup>  $\simeq 4$  kW/mm<sup>2</sup>

Time to ionize carbon atom with 100% probability:  $T \simeq 250$  s Robin Santra

#### **APS undulators generate:**

 ${\sf Flux}\simeq 5 imes 10^{15}~{\sf ph/s/mm^2}\simeq 0.15~{\sf kW/mm^2}$ 

Time to ionize carbon atom with 100% probability:  $T' \simeq 10^5$  s  $\simeq 1$  day



Graphitization of the surface layer

of the diamond crystal is observed after several days of operations. Though, no significant degradation in the performance of the high-heatload monochromator is observed after a year of operations.

FEL2010, Malmö, Aug

# Diamond under 3.5 kW/mm<sup>2</sup> load survives

#### J. Als-Niesen, A. K. Freund, et al, NIM, B94, 348-350 (1994).



# **Conclusions and Outlook**

Yet no show stoppers for XFELO cavities are detected:

- Quality of diamond crystals: ✓ theoretical > 98% reflectivity is achievable.
- Heat load problem: simulations indicate that Bragg reflection region variations can be  $\leq 1$  meV.
- Angular stability: 🗸  $\delta \theta \simeq 10$  nrad (rms) can be achieved
- Radiation damage: ✓ yet indirect evidence.



# **Conclusions and Outlook**

Yet no show stoppers for XFELO cavities are detected:

- Quality of diamond crystals: 

   theoretical > 98% reflectivity is achievable.
- Heat load problem: simulations indicate that Bragg reflection region variations can be  $\lesssim 1$  meV.
- Angular stability:  $\checkmark$  $\delta\theta \simeq 10$  nrad (rms) can be achieved
- Radiation damage: 🗸 yet indirect evidence.

A more focused R&D program is in progress at Argonne:

radiation damage, diamond reflectivity, focusing mirrors, nanoradian positioning, multi-axis feedback stabilization, whisper quiet crystal cryogenic cooling, test cavity, etc.



# **Conclusions and Outlook**

Yet no show stoppers for XFELO cavities are detected:

- Quality of diamond crystals: ✓ theoretical > 98% reflectivity is achievable.
- Heat load problem: simulations indicate that Bragg reflection region variations can be  $\lesssim 1$  meV.
- Angular stability:  $\checkmark$  $\delta\theta \simeq 10$  nrad (rms) can be achieved
- Radiation damage: ✓ yet indirect evidence.

A more focused R&D program is in progress at Argonne:

radiation damage, diamond reflectivity, focusing mirrors, nanoradian positioning, multi-axis feedback stabilization, whisper quiet crystal cryogenic cooling, test cavity, etc.

### Thank you for your attention