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Abstract

In FEL oscillators, a desynchronisation (so-called de-
tuning) between the electron-bunch passage frequency and
the repetition rate of the laser can lead to instabilities,
characterised by erratic longitudinal shape of the emitted
light pulses. We show that these instabilities can be con-
trolled using a simple feedback system which consist in
re-injecting in the cavity a part of the emitted light. Analyt-
ical, numerical and experimental studies on the UVSOR-II
storage ring have been performed, and show that the energy
needed to achieved the control can be extremely weak, in
practical higher than the noise level.

MODEL AND DYNAMICS OF STORAGE
RING FEL WITH A

DESYNCHRONISATION

Model

For these studies, an adapted modelling corresponds to
a longitudinal description of the laser pulse. The dynamics
of the laser pulse is modelled by a master equation which
describes the envelop of the laser pulse en(θ) at each round
trip number n of the laser, as shown in Figure 1 [1]. θ be-
ing the temporal coordinate associated to the longitudinal
coordinate.
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Figure 1: Schematic representation of the pulse en(θ)e
iωθ

observed at each cavity turn. en(θ) represents the pulse
envelop at the turn number n; ω is the angular frequency of
the laser. The hypothesis of slow variation at each turn of
en(θ) permits to use a continuous time T [2]. The variable
becomes e(θ, T ).

Making the assumption that the evolution of the laser
pulse is slow compared to the cavity round trip time, the
evolution of the envelop of the pulse e(θ, T ) is given by [1]:

eT (θ, T ) = −e− veθ +Gf(θ)(e + eθθ) (1)

+
√
ηξ(θ, T ) (2)

With T the slow time associated to the number of cav-
ity round trip, in unit of τc, the lifetime of the photons
in the cavity. θ is the fast time, in unit of tu = π√

2Δωg
,

with Δωg the FEL gain bandwidth. v is the drift parame-
ter, it describes the desynchronisation between Te and TL:
v = TL−Te

TL

τc
tu

. In this representation, a desynchronisation
between the two periods TL and Te acts as a constant drift
of velocity v, which tends to push the pulse toward one ex-
tremity of the system (cf. Fig. 2). Spontaneous emission
is taken into account in the white noise term ξ(θ, T ), with
< ξ∗(θ′, t′)ξ(θ, t) >= δ(θ − θ′)δ(t − t′), η representing
the noise level.
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Figure 2: Schematic example of a laser pulse submitted
to a constant drift. The shape has been taken non regular
because the drift can lead the system turbulent.

The gain dynamics depends of the type of accelerator
and of the insertion devices. For storage ring, it can be
expressed as [3, 4, 5]:

f(θ) = e
− θ2

2σ2
b (3)

G =
A

σ
e−

(σ2−1)
2 (4)

dσ2

dT
=

1

Ts
(1− σ2 +

∫ L

0

|e(θ, T )|2dθ), (5)

with σb the length of the electron bunch, in unit of tu,
σ the electron bunch energy spread, A the maximum gain,
in unit of the losses of the cavity, Ts is the synchrotron
decay time, in unit of τc and L the cavity round trip time,
in unit of tu. For numerical simulations, values are taken
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close to these of UVSOR-II operation condition values [6]:
Ts = 263, A = 2.17, σb = 900, tu = 100 fs, τc = 20 ms.
The noise level is fixed at η = 10−10.

FEL Dynamics in Function of the Drift Velocity

Figure 3 shows results of the integration of the equa-
tions (2) to (5) for two values of the drift velocity: v = 0
and v = 1. It is represented in (a) and (c) the laser pulse
intensity |e(θ, T )|2 and in (b) and (d) the norm of the spec-

trum |ẽ(k, T )|2
(
ẽ(k, T ) =

∫ +∞
−∞ e(θ, T )eikθdθ

)
. For a

zero or a weak drift velocity, the system is stable (Fig. 3a,
b). For higher desynchronisation value, the laser pulses
have an erratic behaviour (Fig. 3c). Structures also appear
in the spectrum (Fig. 3d) [1]. These behaviours have also
been observed experimentally [3, 7, 8, 9, 1].
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Figure 3: (a),(c): spatio-temporal diagram of the intensity
|e(θ, T )|2, (b),(d): spectro-temporal diagram of the norm
of the spectrum |ẽ(k, T )|2, for two values of the drift ve-
locity: (a),(b) v = 0, (c),(d) v = 1.

Concerning the origin of the turbulent behaviour, it is
known that this type of system has always a stable station-
ary solution, either a gaussian like shape or the uniform
solution with zero amplitude (e(θ, T ) = 0) [10, 11]. How-
ever if the drift velocity is sufficiently high, small localised
perturbations, while drifting toward one extremity of the
system, can be strongly amplified, and can become macro-
scopic before disappearing at one limit of the system. This
is the so-called ”transient growth” scenario, which arises
in a general manner in spatio-temporal systems submitted
to a drift [12, 13]. As noise from spontaneous emission
is always present, this scenario is repeated at infinity, cre-
ating some so-called ”noise sustained structures” (Fig. 3
b,d) [14, 15].

CONTROL OF THE INSTABILITIES

Principle

The feedback method we test consists in reinjecting with
a delay a part of the output pulses in the cavity thanks to a
external mirror [16] (Fig. 4). The delay of the feedback can

be changed easily in changing the position of the mirror.

Mirror

δ LL + 

FEL cavity

L

Figure 4: Schematic representation of the control principle:
a small part of the output pulses is reinjected in the cavity,
with a small shift δL compared to the cavity length L.

This technique has been previously applied to ”classical”
active mode locked laser (the so-called ”Coherent Photon
Seeding” technique [17, 18, 19, 20]), which can present
similar dynamics [21]. With the feedback, the equation (2)
becomes :

eT (θ, T ) = −e− veθ +Gf(θ)(e + eθθ) (6)

+αe(θ − a, T ) +
√
ηξ(θ, T ), (7)

and the equations (3),(4), (5) remain identical. α2 is the
fraction of power reinjected in the cavity and a is the delay,
proportional to δL (Fig. 4).

Numerical Results

Figure 5 shows numerical results of the integration of
the equations (7), and (3) to (5), with a feedback applied at
T = 1000.
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Figure 5: (a) Spatio-temporal and (b) spectro-temporal
evolution of the laser pulses when a feedback is applied at
time T = 1000. Parameters: v = 1, for T < 1000 α = 0
and for T ≥ 1000, α = 10−2 and a = 50.

Figure 5 shows clearly that the feedback, with these pa-
rameters (v = 1, α = 10−2, a = 50) and after a tran-
sient, permits to suppress in a large manner the fluctua-
tions. Noise sustained structures in the spectrum are also
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suppressed. Repeated numerical simulations show that the
system converges every time toward the same new station-
ary solution.

Experimental Results

Experimental results obtained at the storage ring of
UVSOR-II are shown in Figure 6 [16]. The laser pulse
intensity is recorded with a double sweep streak-camera
(Hamamastu C5680) and the spectrum is obtained using a
planar Perrot-Fabry and a linear CCD camera.
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Figure 6: Experimental feedback-induced erratic regime
suppression in a free electron laser (fraction of reinjected
power α2 � 0.5 × 10−8, spatial shift a = 130 ps). Upper
and lower Figures are |e(θ, T )|2 and the spectrum versus
time |ẽ(k, T )|2, respectively. (a), (b) Without feedback.
(c), (d) With feedback. Each streak camera recording is
synchronised with its corresponding spectrum.C. Evain et.
al., Phys. Rev. Lett. 102, 134501 (2009). Copyright (2009)
by the American Physical Society.

Without feedback, the behaviour of the laser is unsta-
ble (Fig. 6a), and the spectrum is too large to be recorded
entirely (Fig. 6b). With feedback, fluctuations are in large
part suppressed (Fig. 6c), and this is associated with a spec-
trum width narrowed (Fig. 6d). The fraction of the power
which has been reinjected in the cavity (in the TEM00

mode) can be calculated and is found to be very low:
α2 � 0.5× 10−8 [16].

Analytical Study: Convective-absolute Threshold

In a spatio-temporal system submitted to a drift,
like a FEL oscillator with a detuning, the threshold of
turbulent-regular behaviour is usually near the threshold of
absolute-convective instability [14, 22]. In this manner, the
knowledge of the convective-absolute threshold expression
in the FEL system with feedback can provide information
about the efficiency of the feedback. In the case of
global coupling, like in storage ring FEL [Eq. (5)], the
convective-absolute threshold does not coincide exactly
with the threshold of turbulent-regular behaviour [16],

however it can give qualitative information about the
efficiency of the feedback in function of the parameters.

The convective-absolute threshold permits to separate
two asymptotic behaviours of the linearised system
in studying the local stability of the uniform solution
e(θ, T ) = 0, which is the stationary stable solution when
the desynchronisation is strong. The strategy consists first
in perturbing locally the uniform solution (for example at
θ = 0 and T = 0), and then in studying the behaviour
of system at the point where the perturbation has been
applied. There are two possible behaviours : if the drift is
strong, the perturbation is taken far from the point where
it has been applied and lim

T→∞
e(θ = 0, T ) → 0. The

system is said to be in a linear convective regime [22]. The
other possibility is that the perturbation grows at the point
where it has been applied and lim

T→∞
e(θ = 0, T ) → ∞.

In this case, the system is said to be in an absolute linear
regime [22]. Generally, a convective regime is associated
to a turbulent behaviour whereas an absolute regime is
associated to a regular behaviour, which means in this sys-
tem that a convective (resp. absolute) regime is generally
associated to a non-efficient (resp. efficient) control of the
instabilities.

It is possible to find an expression of the convective-
absolute threshold of the linearised system [16]:

α =
eβa

a
(2Aβ + v), (8)

with β given by the largest solution of:

Aβ2 + 2β(
A

a
+

v

2
) +

v

a
+A− 1 = 0. (9)

The Figure 7 shows the convective-absolute threshold in
function of the feedback delay a and of the feedback gain
α.
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Figure 7: Convective-absolute areas in function of the feed-
back delay and of the feedback gain coefficient α. Parame-
ters: v = 4, A = 2.17.

We see that when the delay a is increased, the gain co-
efficient α needed to be in the absolute area tends to zero,
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that is the quantity of the laser pulse to be reinjected in the
cavity to control the instabilities can be very small. This
is consistent with the experimental results where we have
calculate a coefficient of α2 = 0.5 × 10−8. In practice,
a value higher that the noise level should be sufficient to
stabilise the system [16].

CONCLUSION

In a FEL oscillator, a desynchronisation between the
laser repetition rate and the electron bunch passage fre-
quency can lead to instabilities. This turbulent behaviour
can be control by a simple feedback method, which con-
sists in reinjecting a small part of the output laser pulse
in the cavity thanks to a external mirror. Numerical, ex-
perimental and analytical studies show that the quantities
necessary to control the turbulent regime is very weak, in
practice higher that the noise level. This study is applied to
storage ring FEL oscillator, but this feedback method can
be applied more generally to finite spatio-temporal systems
submitted to a drift [16].
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