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Abstract

We present analytical results for the one-dimensional
dispersion relation for high-gain FELs. Using kappa-n
distributions, we obtain analytical relations between the
dispersion relations for various order kappa distributions.
Since an exact solution exists for the kappa-1 (Lorentzian)
distribution, this provides some insight into the number of
modes on the way to the Gaussian distribution.

INTRODUCTION

For the 1D FEL model in [1] analytical results exist for
the roots of the dispersion relation in the case of a cold
beam or a Lorentzian energy distribution. For the cold
beam, the relevant integrals in the dispersion relation may
be evaluated directly due to the delta function. For any
thermal spread, however, the relevant integral must be eval-
uated by contour integration, a procedure which breaks
down for a Gaussian energy distribution. An exact dis-
persion relation exists for a Gaussian energy distribution,
obtained using other methods.

The dispersion relation is given by

s − D̂

1 − ıΛ2
pD̂

= 0 (1)

for any arbitrary energy spread function, where

D̂ =

∫ ∞

−∞
dP̂

F̂ ′(P̂ )

s + ı(P̂ + Ĉ)

and F̂ (P̂ ) is the normalized energy distribution of the elec-
tron beam in the linear approximation.

For a cold beam, F̂ (P̂ ) = δ(P̂ ), and the familiar dis-
persion relation for solutions of the form ∼ esẑ is given
by

s
(
(s + ıĈ)2 + Λ̂2

p

)
= ı (2)

As this is a cubic equation, an exact analytical solution may
be written down using the Cardano formula. For the case of
a Lorentzian distribution, N = 1, another cubic equation
is obtained by contour integration. For a Gaussian distri-
bution, the dispersion relation is obtained D̂ using integral
tricks [1] to yield
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− ı
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π/2

Λ̂3
T

(
s + ıĈ
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(3)

∗ swebb@bnl.gov, Stony Brook University Physics and Astronomy
† vl@bnl.gov

For applications to Coherent Electron Cooling (CeC) [2]
it is necessary to understand the details of the phase space
density evolution of the electron beam perturbation gener-
ated by the FEL instability. Work already exists for this
goal [3] [4], and exact analytical solutions exist for the ini-
tial perturbation generated by the hadron beam [5]. How-
ever, the solutions in [5] only exist for κ = 2 energy dis-
tributions, and it is therefore desirable for consistency to
obtain dispersion relations for the FEL process for such an
energy distribution. A solution also exists in the FEL mod-
ulator, which is also obtained for the κ− 2 distribution [6].

In this paper I present formal relationships for arbitrary
κ distributions, obtaining results for the growing roots re-
cursively. Formally this provides an avenue of studying the
analytical properties of the roots of the dispersion relation
in the limit approaching a Gaussian energy spread, while
from a practical application this allows us to study the CeC
process from start to finish using a consistent background
electron beam in the equations of motion.

κ − N DISTRIBUTIONS

A properly normalized κ = N distribution is given by

fN (P ) =
Γ[N ]√

πqNΓ[N − 1/2]

1

(1 + (P/qN )2)
κ (4)

where qN is some function of N and Γ[N ] is the gamma
function. The zeroth through N th moment in P is well-
defined, but 〈PN+1〉 → ∞. This distribution is convenient
for modelling because it vanishes at infinity when it is ana-
lytically continued to the complex plane, thereby allowing
contours to be closed in the upper- and lower-half planes,
which cannot be done with a Gaussian distribution.. This
allows the use of the Cauchy residue theorem to evaluate
integrals of the function.

From the definition of the exponential function, a Gaus-
sian distribution may be written as the limit of κ − N dis-
tributions

exp

(
− x2

2σ2

)
= lim

N→∞

(
1 +

x2

2σ2N

)−N

(5)

The simplest appropriate choice for qN that converges to
the Gaussian is then given by qN =

√
2Nσ. This gives the

N th order κ distribution that we study to be

fN (P ) =
Γ[N ]√

2πNσ2Γ[N − 1/2]

1

(1 + P 2/(2σ2N))N

(6)
It is clear that fN→∞(P ) = 1√

2πσ2
exp{−P 2/(2σ2)}.

MOPB03 Proceedings of FEL2010, Malmö, Sweden

56 FEL Theory



⊗

⊗

⊗
N

2

N

Figure 1: The pole structure for the growing roots. There
are two poles of order N on the imaginary axis, and another
pole of order 2 located shifted off the axes.

EVALUATING D̂ FOR FN(P )

We define

D̂N = ı

∫
dP̂

1(
s + ı(Ĉ + P̂ )

)2 fN (P̂ ) (7)

which is equivalent to D̂ for the N th kappa distribution, and
we have introduced normalized variables for direct compar-
ison to [1]. For �(s) > 0, the pole structure is given by fig.
1.

Closing the contour on the lower half-plane and applying
the Cauchy residue theorem gives two contributions, one
from the pole on the positive imaginary axis, and the other
from the pole due to the growing root. The imaginary axis
contribution is given by

φ� = − 2ıπ

(N − 1)!

dN−1

dP̂N−1

[(
s + ı(Ĉ + P̂ )

)−2

×
(

1 − ıP̂ /qN

)−N

(−ıqN)N

]
P̂=−ıqN

(8)

which gives the resulting D̂N in terms of the single pole

D̂N = ı
Γ[N ]

qNΓ[N − 1/2]
φ� (9)

Using the method due to Landau, D̂N can be defined in
such a way that the solution is independent of the sign of
�(s).

It can be shown that taking M derivatives of a product
of two functions behaves as a binomial expansion:

dM

dxM
(f(x)g(x)) =

M∑
m=0

(
M

m − 1

)
f (m)(x)g(M−m)(x)

This allows φ� to be solved as an expansion in the deriva-
tives of the two components. The resulting series solution
for D̂N is given by

D̂N = ı
Γ[N ]

qNΓ[N − 1/2]
× . . .

2π

(N − 1)!

1

22N−1

N−1∑
m=0

(
N − 1

m

)
× . . .

{
2mm!

(s + qN + ıĈ)2+m
qN−1−m
N

(2N − 1 − m)!

(N − 1)!

} (10)

Solution of the dispersion equation (1) can then be obtained
by whatever means are best.

The decaying roots (�(s) < 0) have the D̂−
N given by

mapping q 	→ −q and taking the negative of the result, and
the oscillating roots (�(s) = 0) can be obtained by adding
to D̂+

N a term

2Nπı
(ıs − Ĉ)/q2

N(
1 + (ıs − Ĉ)2/q2

N

)N+1

which arises from bumping the contour integral over the
pole on the real axis that occurs with the oscillating root,
and closing the contour in the upper-half plane.

It is interesting to note that, because D̂ is some ratio-
nal function, there will exist nonanalyticities in the roots
where the real part may cross zero, sometimes abruptly, for
a sufficiently large energy spread. However, for a given
N , the next order typically appears to be well-behaved in
that regime of the energy spread, and otherwise matches
the previous order quite well. Therefore, one must be care-
ful when using these dispersion relations with some finite
energy spread.

TWO LIMITS

We now examine two limits of these series: the κ−2 dis-
tribution and the N → ∞ limit. The first is of use to CeC
modelling, while the second provides some insight into the
poles for a Gaussian energy spread that might be more in-
tuitive than the analytic continuation of the error function
to the complex plane.

κ − 2

For the case of a κ−2 distribution we take qN = q2 = q
and obtain

D̂2 = ı
s + ıĈ + 3q

(s + q + ıĈ)3
(11)

This yields a fourth order equation in the dispersion re-
lation, with the added condition that all roots must sat-
isfy �(s) > 0 to obtain the growing roots. An analyt-
ical formula exists for the quartic, obtained by Ferarri’s
method, however the results are analytically complicated,
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and we present here only plots of the results. Supposing
that σ = .1 for the definition of the qN , this implies that
q2 = .2, while the result for the Lorentzian distribution has
q1 = .141. For comparison purposes, we present on the
same plot the results for both.

It is worth noting for completeness that, for the decaying
root, the dispersion relation can be obtained by mapping
q 	→ −q in D̂2 and taking the negative of the result 1, while
obtaining the oscillating roots requires taking attention to
the pole on the real axis, which gives in addition to the
decaying root D̂−

2 a term given by

4πı
(ıs − Ĉ)/q2

2(
1 + (ıs − Ĉ)2/q2

2

)3

Large N Limit

It would be convenient to determine the relative im-
portance of each term for large N distributions, where
qN ∝ √

N indicates that this term will eventually become
much bigger than 1 for sufficiently large N . In this case
it is safe to assume that |s + q̂ + ıĈ| ≈ q̂ + O(1/

√
N)

near Ĉ = 0. It is then convenient to look at the order of
magnitude estimated coefficients

cm = 2m (2N − 1 − m)!

(N − 1 − m)!
qN−1−m
N q−2−m

N

where the first coefficient of qN arises explicitly in the ex-
pansion, and the second comes from considering (s+qN +
ıĈ) ∼ qn for the purposes of this approximation. The crit-
ical value for m, taken by maximizing ln(cm) with respect
to m, is given by

m ≈ N − 1 − eN
2
v0

− e
(12)

where v0 = e2qN , subject to the condition that m ∈
[0, N − 1]. For some range of energy spreads the largest
term in the series defining D̂ will appear somewhere in the
middle of the series, whereas below this range the largest
term is for m = N −1 and below this range m = 0, specif-
ically for small q the smaller m terms are more important,
while for larger q higher order terms are necessary to accu-
rately calculate D̂. It is important to note that the second
derivative at this local maximum is on the order of magni-
tude of

d2(ln cm)

dm2
|m=N−1− eN

2/v0=e
=

1

N + eN
2/v0−e

− 2/v0 − e

N

(13)
which is O(1/N) in smallness, and it is therefore possible
to assume that truncating the series at the quadratic order
gives some good approximation of the terms. It is impor-
tant to note for approximation purposes that it is precarious

1This is achieved by flipping the contour from the lower-half to the
upper-half plane, and then reversing its orientation to give the correct in-
tegral.

to series expand near m = 0 since the Stirling approxi-
mation was used to obtain this result, and does not start to
converge until m ∼ 40.

As an example of obtaining an approximate dispersion
relation, consider a case where the largest term is the first
term, and that the logarithm is approximately linear from
that point on2. Taking the linear expansion around m =
N/2, we obtain as a result

ln cm ≈ −N + ln(α(s)) + ln(β(s))(m − N/2) (14)

where

α(s) =
2N

(
3N
2 − 1

)3N/2−1
q

N/2−1
N(

N
2 − 1

)N/2−1
(
s + qN + ıĈ

)2+N/2

and

β(s) =
2(

3N
2 − 1

)
qN

(
s + qN + ıĈ

)
Summing the approximate series from m = 0 . . .N − 1
gives as a result that

D̂N ≈ e−Nα(s)β(s)−N/2 1 − β(s)N−1

1 − β(s)
(15)

The achievement here is that the transcendental equation on
s that arises from Gaussian distributions has been converted
to an algebraic equation. Since β(s) ∼ N−3/2 for large N ,
it may be fair to drop the β(s)N−1 term as small.

CONCLUSION

We have shown here a method of generating the disper-
sion relation for the 1D self-consistent model of high-gain
FELs for any natural number choice of κ − N distribu-
tion. We have then applied this method to obtain an exact
result for the κ − 2 distribution, of interest for a theoreti-
cal model of coherent electron cooling, as well as provid-
ing some insight in obtaining the approximate dispersion
relation for large N , where the dispersion relation is still
a rational function, rather than the formal Gaussian limit,
which is given in terms of transcendental functions.
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