Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPB02 | A Simple Method for Controlling the Line Width of SASE X-Ray FELs | undulator, electron, radiation, FEL | 258 |
|
|||
We describe a novel single-bunch self-seeding scheme to obtain highly monochromatic X-rays from a baseline XFEL undulator. For a single-bunch self-seeding scheme a long electron beam bypass is required, implying modifications of the baseline undulator configuration. We avoid such requirement exploiting a single crystal in the transmission direction. The method can be realized using a temporal windowing technique, requiring a magnetic delay for the electron bunch only. The proposed setup is extremely simple and composed of as few as two simple elements: the crystal and the short magnetic chicane, which accomplishes three tasks by itself. It creates an offset for crystal installation, removes the electron micro-bunching from the first undulator, and acts as a delay line for temporal windowing. Using a single crystal installed within a short magnetic chicane in the baseline undulator, it is possible to decrease the bandwidth of the radiation well beyond the XFEL design down to 10-5. The installation of the magnetic chicane does not perturb the undulator focusing system and does not interfere with the baseline mode of operation. |
|||
WEPB15 | Commissioning of The Low-Charge Resonant Stripline BPM System For The SwissFEL Test Injector | pick-up, linac, undulator, feedback | 429 |
|
|||
This paper introduces the architecture and first beam commissioning results of the standard BPM system for the SwissFEL test injector, a 250MeV linac that is progressively being commissioned in order to perform R&D for the "SwissFEL" 5.8GeV hard-X-ray FEL facility proposed at PSI. Since the SwissFEL has a nominal bunch charge range of 10-200pC, the test injector is equipped with 500MHz resonant stripline BPMs that are optimized for high dynamic range and sensitivity, to support machine operation well below 10pC. Beam tests with a 5 GSa/s direct sampling electronics designed at PSI showed a single-bunch resolution of <20um RMS at 2pC and typically 7um RMS for charges >10pC. The BPMs also measure bunch charge, insensitively to dark current, with <30fC RMS resolution at 2pC. |