Paper | Title | Page |
---|---|---|
MOPB01 | Fully Electromagnetic FEL Simulation via Lorentz-Boosted Frame Transformation | 48 |
|
||
Numerical electromagnetic simulation of some systems containing charged particles with highly relativistic directed motion can by sped up by orders of magnitude by choice of the proper Lorentz-boosted frame*. A particularly good application for boosted frame calculation is short wavelength FEL simulation. In the optimal boost frame (i.e., the ponderomotive rest frame), the red-shifted FEL radiation and blue-shifted undulator field have identical wavelengths and the number of required time-steps for fully electromagnetic simulation (relative to the laboratory frame) decreases by a factor of gamma squared. We have adapted the WARP code** to apply this method to several FEL problems including coherent spontaneous emission from prebunched e-beams, strong exponential gain in a single pass amplifier configuration, and FEL emission from e- beams in undulators with multiple harmonic components. We discuss our results and compare with those obtained using the "standard" FEL simulation approach which applies the eikonal and wiggler-period-averaging approximations. * J.-L. Vay, Phys. Rev. Lett. 98, 130405 (2007). |