Paper | Title | Page |
---|---|---|
TUPB08 | Staged Self-Seeding Scheme for Narrow Bandwidth, Ultra-Short X-ray Harmonic Generation Free Electron Laser at LINAC Coherent Light Source | 266 |
|
||
Success of the world's first x-ray (0.15-1.5 nm) free electron laser (FEL) - LCLS - at SLAC opens the gate for new science. In this paper, we study the FEL performance for a two-stage self-seeding scheme by introducing a photon monochromator and an electron by-pass in the undulator system. The FEL generated in the first part of the undulator system is purified in spectrum, recombines with the electron bunch, and is amplified in the second part of the undulator system to saturation. Such modifications will improve the FEL longitudinal coherence, reducing the FEL band-width by two-orders of magnitude, but with similar peak power; hence improving the peak brightness by two-orders of magnitude. Such a self-seeding scheme is studied for both soft x-ray (200 eV to 2 keV) and hard x-ray (800 eV to 8 keV) cases with single electron bunch. The photon monochromator system is configurated as variable line spacing gratings for soft x-ray and single crystal for hard x-ray. Harmonic Generation and Chirped FEL are also considered aiming at reaching even shorter wavelength x-ray photons and at generating FEL pulse with even shorter temporal duration, respectively. |
||
WEPA07 | Variable Gap Undulator for 1.5-48 keV Free Electron Laser at LINAC Coherent Light Source | 370 |
|
||
Success in commissioning the world's first x-ray (0.15-1.5 nm) free electron laser (FEL) - the LINAC Coherent Light Source (LCLS) - at SLAC National Accelerator Laboratory opens the gate for new science. Further improving the FEL spectrum bandwidth, shortening the FEL pulse temporal duration, and generating even higher energy x-ray photons are urged by various potential users. In this paper, we study the possibility of generating femtosecond duration X-ray pulses with a variable photon energy from 1.5 to 48 keV, using an electron beam with the same characteristics of the LCLS beam, and a planar undulator with additional focusing. We assume that the beam energy can be changed, and the undulator has a variable gap, allowing the undulator parameter to be changed from zero to a maximum value. It is assumed to be operated in an ultra-low charge and ultra-short pulse regime. |