A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Messerly, M. J.

Paper Title Page
WEPB36 Status of the LBNL Normal-conducting CW VHF Electron Photo-gun 475
 
  • F. Sannibale, B.J. Bailey, K.M. Baptiste, A.L. Catalano, D. Colomb, J.N. Corlett, S. De Santis, L.R. Doolittle, J. Feng, D. Filippetto, G. Huang, R. Kraft, D. Li, H.A. Padmore, C. F. Papadopoulos, G.J. Portmann, S. Prestemon, J. Qiang, J.W. Staples, M.E. Stuart, T. Vecchione, R.P. Wells, M.S. Zolotorev
    LBNL, Berkeley, California
  • M. J. Messerly, M.A. Prantil
    LLNL, Livermore, California
  • M. Yoon
    POSTECH, Pohang, Kyungbuk
 
 

The fabrication and installation at the Lawrence Berkeley National Laboratory of a high-brightness high-repetition rate photo-gun, based on a normal conducting 187 MHz (VHF) RF cavity operating in CW mode, is in its final phase. The cavity will generate an electric field at the cathode plane of ~20 MV/m to accelerate the electron bunches up to ~750 keV, with peak current, energy spread and transverse emittance suitable for FEL and ERL applications. The gun vacuum system has been designed for pressures compatible with high quantum efficiency but "delicate" semiconductor cathodes to generate up to a nC bunches at MHz repetition rate with present laser technology. Several photo-cathode/laser systems are under consideration, and in particular photo-cathodes based on K2CsSb are being developed and have already achieved a QE of 8% at 532 nm wavelength, or close to 20% including the Schottky barrier lowering. The cathode will be operated by a microjoule fiber laser in conjunction with refractive optics to create a flat top transverse profile, as well as a birefringent pulse stacker to create a flat top temporal profile. The present status and the plan for future activities are presented.

 
THPB05 Velociraptor: LLNL’s Precision Compton Scattering Light Source 611
 
  • F.V. Hartemann, F. Albert, S.G. Anderson, C.P.J. Barty, A.J. Bayramian, R.E. Bonnanno, T.S. Chu, R.R. Cross, C.A. Ebbers, D.J. Gibson, T.L. Houck, R.A. Marsh, D.P. McNabb, M. J. Messerly, R.D. Scarpetti, M. Shverdin, C. Siders, S.S.Q. Wu
    LLNL, Livermore, California
  • C. Adolphsen, A.E. Candel, E.N. Jongewaard, Z. Li, T.O. Raubenheimer, S.G. Tantawi, A.E. Vlieks, F. Wang, J.W. Wang, F. Zhou
    SLAC, Menlo Park, California
  • V.A. Semenov
    UCB, Berkeley, California
 
 

Recent progress in accelerator physics and laser technology have enabled the development of a new class of tunable x-ray and gamma-ray light sources based on Compton scattering between a high-brightness, relativistic electron beam and a high intensity laser pulse produced via CPA. A precision, tunable, monochromatic (< 0.4%) source driven by a compact, high-gradient X-band linac designed in collaboration with SLAC is under construction at LLNL. High-brightness (250 pC, 3.5 ps, 0.4 mm.mrad), relativistic electron bunches will interact with a Joule-class, 10 ps, diode-pumped CPA laser pulse to generate tunable γ-rays in the 0.5-2.5 MeV photon energy range. This gamma-ray source will be used to excite nuclear resonance fluorescence in various isotopes. A very compact version of the accelerator (2.5 m) will also be used to generate medical x-rays in the 15-25 keV range. Fields of endeavor include homeland security, stockpile science and surveillance, nuclear fuel assay, and waste imaging and assay. The source design, key parameters, and current status will be discussed, along with important applications, including nuclear resonance fluorescence and high precision medical imaging.