A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Matveenko, A.N.

Paper Title Page
TUPA28 13.5-nm Free-Electron Laser for EUV Lithography 250
 
  • Y. Socol
    Falcon Analytics, Netanya
  • G.N. Kulipanov, O.A. Shevchenko, N. Vinokurov
    BINP SB RAS, Novosibirsk
  • A.N. Matveenko
    HZB, Berlin
 
 

Lithography over the last years has been actively used to produce more compact and powerful computers. The dimensions of the microchips still require shorter wavelengths of light to enhance future ‘nano’ scale production. It is envisaged that 193 nm lithography is beginning to reach its limit. Extreme Ultraviolet (EUV) lithography of 13.5 nm wavelength could provide a solution for the next step of miniaturization, however presently no light source exists with sufficient average power. We report here results of a study, showing the feasibility of a FEL EUV source driven by a multi-turn superconducting energy-recovery linac (ERL). The proposed 40x20 m2 facility will be located underground for radiation safety purposes. With MW-scale consumption from the power grid it is estimated to provide 5 kW of average EUV power. We elaborate in some detail the SASE option, which is presently technically feasible, however regenerative-amplifier option should be also kept in mind. The proposed design is based on a short-period (2-3 cm) undulator. The corresponding electron beam energy is about 0.6-0.8 GeV. The proposed accelerator consists of photoinjector, booster, and a multi-turn ERL.