A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Catalano, A.L.

Paper Title Page
WEPB36 Status of the LBNL Normal-conducting CW VHF Electron Photo-gun 475
 
  • F. Sannibale, B.J. Bailey, K.M. Baptiste, A.L. Catalano, D. Colomb, J.N. Corlett, S. De Santis, L.R. Doolittle, J. Feng, D. Filippetto, G. Huang, R. Kraft, D. Li, H.A. Padmore, C. F. Papadopoulos, G.J. Portmann, S. Prestemon, J. Qiang, J.W. Staples, M.E. Stuart, T. Vecchione, R.P. Wells, M.S. Zolotorev
    LBNL, Berkeley, California
  • M. J. Messerly, M.A. Prantil
    LLNL, Livermore, California
  • M. Yoon
    POSTECH, Pohang, Kyungbuk
 
 

The fabrication and installation at the Lawrence Berkeley National Laboratory of a high-brightness high-repetition rate photo-gun, based on a normal conducting 187 MHz (VHF) RF cavity operating in CW mode, is in its final phase. The cavity will generate an electric field at the cathode plane of ~20 MV/m to accelerate the electron bunches up to ~750 keV, with peak current, energy spread and transverse emittance suitable for FEL and ERL applications. The gun vacuum system has been designed for pressures compatible with high quantum efficiency but "delicate" semiconductor cathodes to generate up to a nC bunches at MHz repetition rate with present laser technology. Several photo-cathode/laser systems are under consideration, and in particular photo-cathodes based on K2CsSb are being developed and have already achieved a QE of 8% at 532 nm wavelength, or close to 20% including the Schottky barrier lowering. The cathode will be operated by a microjoule fiber laser in conjunction with refractive optics to create a flat top transverse profile, as well as a birefringent pulse stacker to create a flat top temporal profile. The present status and the plan for future activities are presented.