Paper | Title | Page |
---|---|---|
TUPA08 | Ultra-Compact Smith-Purcell Free-Electron Laser | 230 |
|
||
Recently, the theory of the Smith-Purcell free-electron laser has been confirmed by the experiments of Andrews, et al. [1], and of Gardelle, et al. [2] In addition, high-brightness cathodes have been developed using field-emission from arrays of diamond pyramids [3]. By combining these developments we have designed an ultracompact (“shirt-pocket”) free-electron laser and we have begun constructing the device. The electron beam comprises an array of 2-micron diamond-pyramid field emitters that overfills an einzel lens 200-microns wide and 1-mm long, fabricated using ps-laser machining. The beam is accelerated to 10 keV and focused in the short dimension over a lamellar metal grating with a period of 150 microns and a length of 10 mm. The predicted start current at a wavelength of {10}84 microns is 11 mA, which corresponds to 9 A/cm2 at the cathode, before focusing. We have tested cathodes at 30 A/cm2 and 600 mA total current; higher current density should be possible. [1] Andrews, et al, JAP {10}5, 024904 (2009) |