

Second Harmonic Lasing with Duke OK-4 FEL

Y. K. Wu^(a), S. F. Mikhailov^(a), J. Li^(a), V. G. Popov^(a), S. Huang^(a),

S. V. Benson^(b), G. R. Neil^(b)

^(a)FEL Lab, Department of Physics, Duke University

^(b)Thomas Jefferson National Facility, Newport News, VA 23606, USA

August 26, 2008

Acknowledgments

DFELL Staff: M. Busch, M. Emamian, J. Faircloth, S. Hartman, J. Marty, O. Oakley, J. Patterson, M. Pentico, V. Rathbone, G. Swift, P. Wallace, P. Wang

Work supported by U.S. Grants: AFOSR MFELFA9550-04-01-0086 and DoE DE-FG05-91ER40665 DFELL, Duke University FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008 Y.K.Wu

Can planar wigglers emit second harmonic radiation on-axis?

- ^a 2nd harmonic lasing with Jlab FEL
- Synchrotron radiation power

Second harmonic lasing with Duke OK-4 optical klystron FEL

- Layout of the Duke storage ring and OK-4 FEL
- Second harmonic lasing
- Search for lasing mechanisms

2nd Harmonic Lasing with Jlab FEL

FIG. 4. Infrared impinging on the optical beam dump showing the second harmonic TEM_{01} mode. The image is tilted due to relative misalignments in the system with perhaps additional contributions from coupling due to misalignment in our optical collimator.

G. Neil, et al. Second Harmonic FEL Oscillation, PRL, v87, 084801 (2001)

Gain Mechanisms (*M. Xie, NIMA, 483, p527 (2002)*)

- Electron misalignmnet
- Field gradient
- Longitudinal coupling

Jlab 2nd Harmonic lasing

- Antisymmetric resonator mode
- Misaligned e-beam orbit w.r.t. optical axis

DFELL, Duke University FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008

Wiggler Spontaneous Radiation into Harmonics

DFELL, Duke University

FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008

Wiggler Spontaneous Radiation into Harmonics

Layout of Duke FELs

Tune knobs: dv_x , dv_y

DFELL, Duke University FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008 Y. K. Wu

2nd Harmonic Lasing

2nd Harmonic Lasing with Planar OK-4 Optical Klystron

OK-4 Optical Klystron:

- Two planar wigglers sandwiching a buncher
- E-beam: 425 MeV
- Fundamental: ~934 nm
- High finesse optical cavity: with high reflectivity mirrors in 465 472 nm
- Resonator length: 53.73 m

2nd Harmonic Lasing with Planar OK-4 Optical Klystron

DFELL, Duke University FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008

E-Beam Images While Tuning Toward Coupling Resonance

 $dv_{x} = 0.01$

Betatron Tunes

Scanning 2nd Harmonic Lasing Power

Spontaneous Spectra: 2nd Harmonic 1500 -2nd Harm, dnux=0.030 2nd Harm, dnux=0.047 1000

DFELL, Duke University

FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008

Gain Estimate: Cavity Loss

DFELL, Duke University

FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008

DFELL, Duke University

FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008

DFELL, Duke University FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008

Summary on Lasing of 2nd Harmonic Oscillator

- 2nd Harmonic Lasing Demonstrated with OK-4 Optical Klystron
 - Gain: up to 2.5% per pass
 - Tot Extracted Power: ~ 15 mW @ 30 mA; ~ 10 to 15% of fundamental lasing
 - Laser Spatial Mode: TEM₀₀
 - Narrower detuning
- 2nd Harmonic Lasing with Lattice Tuning
 - FEL gain/power increases as vertical emittance increases
 - TEM10 mode is not observed
- **New Findings**
 - Substantial on-axis ^{2¹} harmonic spontaneous radiation power inside the fundamental Gaussian mode area
 - **Stable on-axis TEM00 mode FEL operation with significant output power**

DFELL, Duke University FEL2008, Gyeongju, Korea, Aug. 24 - 29, 2008

