Construction Status of XFEL/SPring-8 (Its stability issue)

Yuji Otake, On behalf of the members of XFEL/SPring-8 Project, **XFEL Joint Project of RIKEN/JASRI** The main presentation items, today, are # what we established about machine and instrument performance, # what is not enough performance of accelerator elements for XFEL, and # How to make up the difference between the target and the established one.

CeB6 Electron Gun, Velocity Bunching, C-band 37 MV/m High Gradient Acceleration, In-vacuum Undulator This technology is to support SPring-8 Compact SASE Source (SCSS) Concept. (Compactness)

Configuration of XFEL/SPring-8 and Its Development/Construction Schedule

(velocity and magnetic bunching) is sensitive to lasing intensity.

General future of XFEL/SPring-8 vs. the SCSS test accelerator.

	XFEL/SPring-8 (Desgin)	SCSS (Achieved)	
Energy	~8 GeV	250 MeV	
Charge amount	~ 0.3 nC	~ 0.3 nC	
Peak current	~ 3kA	300 A	
Emittance	~ 1 π mmmrad	~ 0.7 π mmmrad	
Size	~ 50 µm (rms)	~ 100 µm (rms)	
Laser energy/ pulse		30 µmJ at 60 nm	
Pulse width for SASE	~ 40 fs (rms)	300 fs	
generation			
Wave length of SASE	0.1 nm	60 nm ~ 50 nm	

Stability of the SCSS test accelerator

Time Jitter Tolerances of RF Cavities at the XFEL/Spring-8 & Established Performance

Target Performance

To attain an energy stability of 10⁻⁴ and

— Established Performance Stabilities of the 238 MHz SHB cavity

10 % nucluation of 5 kA peak current.				
Cavity	DV/V(%r ms)	Df (deg. ms)	Dt (ps rms)	
238 MHz SHB	± 0.01	± 0.01	± 0.12	
476 MHz Booster	± 0.01	± 0.02	± 0.12	
L-band Cor. Cavity	± 0.03	± 0.06	± 0.12	
L-band APS Cavity	± 0.01	± 0.06	± 0.12	
C-band Cor. Cavity	± 0.1	± 0.06	± 0.049	
S-band Accelerator	± 0.01	± 0.1	± 0.097	
24C-band Accel. (up-stream)	± 0.01	± 0.2	± 0.097	
104 C-band Accel. (Down-stream)	± 0.01	± 0.5	± 0.24	

Achieved Several Hundred fs

How to make up the difference between the established and the target performance for the XFEL

- Key points to improve the instruments for making up.
- High-voltage stability issue (C, S, L-band Klystron .Electron Gun, IOT for 476 MHz booster).
- Precise rf phase control issue (fs control).
- Environment temperature control issue (Instrument enclosure, building).

The difference is probably a factor of 2 or 3.

Precise Voltage Regulation of Inverter Power Supply for Klystron and Electron Gun

The combined inverter power supplies includes a 20 kHz switching main power supply for rough voltage control and an 80 kHz auxiliary power supply for precise voltage control.

Achieved 0.002 % (rms) at the test accelerator.

Improved an electrical shield for the control error amplifier, Optimized feedback control parameters, etc.

Vertical Horiz/Aca Math MyScope Utilities Help Stopped Tek 625 Acqs 04 Jun 08 11:30:33 Buttons Curs1 Pos 460.0uV Curs2 Pos About 45 k -460.0µV 460.0u\ 0.001 % (rms) ripple Ŷ2 -460.0µ\ -920.0µ\ -47.79µ' vlean(Hs) -38.946756u m: -276.0µ M: 297 σ: 24.88µ n: 155 (80.00 M: 560.0 n: 155.0 93.79u\ td Dev(Hs) 2 ms/Div. 4.623u n: 155.0 Vfms(Hs) 690.0wfn 635.83082 n:0.0 M: 690.0 55.77 n: 614.0 Ch1 1.0mV O BW 5.07 M 2.0ms 250kS/s 4.0µs/pt 10.3ms Ch3 4 Ch2 N 2 4V

Newly developed inverter power supply

Improved

Fiber Optical Length Control

From 46 fs jitter at the test accelerator to several fs at the XFEL.

Temperature Control for XFEL/Spring-8

SUMMARY

* Finished the construction stage of phase-I to confirm the feasibility of the XFEL/SPring-8.

* Lasing stability of 11 % (rms) at the test accelerator.

* Make up the difference between the present phase stability and the target for the XFEL. --> Inverter power supplies for the klystron and the IOT having a voltage regulation of less than 20 ppm (rms) was developed.

* Optical length control of the fiber was developed with performance of its length control of 1 μm for 1 km.
* VEEL building equips the double surface walls with the second second

* XFEL building equips the double surface walls with the air conditioned space between the walls.

* 19" enclosure with water cooled recalculating air within +/- 0.2 K was specially developed.

* The realized performance as mentioned above is almost satisfy our demand, and has possibility over coming the designed performance.