Superlinear Current Dependence in a Grating-Based THz Source: an open mystery

> Heather Andrews Vanderbilt University 26 August 2008

*

Thanks to:

Charles Brau Jonathan Jarvis Vermont Photonics: Christian Guertin, Aiden O'Donnell, Mike Mross, Thomas Lowell, Robert Durant

Dartmouth results show superlinear dependence of emission with current

98

R

Urata et. al., NIMA 429, 457 (1999)

An electron passing over a metal grating produces Smith-Purcell radiation and an evanescent wave

- Smith-Purcell radiation
 - radiates
 - wavelength and angle coupled by Smith-Purcell relation
- Evanescent wave
 - does not radiate
 - scatters off ends of grating
 - has wavelength longer than SP radiation

$$\lambda = \frac{L}{|n|} \left(\frac{1}{\beta} - \cos\theta\right)$$

Evanescent wave is key to SP-FEL operation

- Evanescent wave
 - Travels opposite to electron beam
 - Provides feedback
 - Bunches beam

- Spontaneous oscillation occurs for e-beam current above "start current"
- Below start current spontaneous SP dominates

Bunching makes SP radiation superradiant

- No bunches:
 - Incoherent emission
 - Intensity $\sim N_e$
 - Normal SP spectrum
- Single bunch:

•

- Coherent emission
- Intensity ~ N_e²
- Spectrum unchanged
- Periodic bunches:
 - Superradiant emission
 - Intensity ~ N_e²
 - Spectrum peaked at harmonics

Vermont Photonics THz source based on modified SEM

- 26 38 kV
- 0.1 17 mA
- Current controlled by either cathode heater, or by Wehnelt (or extractor) potential
- Steering coils not shown

We observed the evanescent wave, and possibly the second harmonic

Spontaneous radiation still exhibits superlinear current dependence

Ŕ

Additional clues suggest an electron beam oscillation

- Spectra do not change over range of current
- "Turn on" current is always around 0.5 1.5 mA
- Behavior is independent of grating profile, wehnelt shape, cathode, anode-cathode spacing, etc.
- Emitted power is very sensitive to combination of heater current and wehnelt bias and lens setting

We have limited options for testing for bunching

 Because the spectrum is unchanged, bunching must be lower frequency than resolution of spectrometer (6 GHz)

R

He

- Enhancement would be at a very high harmonic of bunching frequency
 - Could use a high resolution spectrometer
- Calculations show OTR should be too weak to detect
- Anything placed in the beam path melts
 - Could use loop antenna or Rogowsky coil

Conclusions - An explanation for superlinear power increase is still lacking

- Superlinear power dependence on current is observed for two sets of grating FEL experiments
- The existing theory does not explain this behavior
- Some type of cathode oscillation or beam bunching could explain behavior

4