Study of periodic "Spectral Gaps" in the Free-Electron Lasers using a waveguide

R. Prazeres

LCP / CLIO Bât 201P2, Université Paris-Sud 91405 ORSAY cedex FRANCE

Configuration of the CLIO infrared FEL $3 \,\mu m$ up to $150 \,\mu m$

(infrared range) undulator dipole dipole front back - but it induces a mirror mirror phenomenon of : periodic 'Spectral Gaps' back mirror waveguide GAIN transversal distribution front mirror hole coupling X Ζ

waveguide :

- reduces optical losses

Measurements on CLIO at 15 MeV

n° 031616470 et 031617015 23 mars 2007

FELIX 20 MeV FOM-Institute for Plasma Physics Rijnhuizen

Study of Spectral Gaps : numerical simulation...

Numerical simulation of cavity losses and FEL power

Calculation of :

- cavity losses
- hole couping extraction rate
- small signal gain *
- intra-cavity laser power *
- output laser power *

* using the theoretical model of FEL saturation : G. Dattoli

it is a 2D single wavelength model :

- does not include short pulse effects of the FEL
- limited to narrow linewidth FEL operation
- does not take into account resonance wavelength shift induced by the waveguide

wavelength (µm)

CLIO 15 MeV

CLIO 15 MeV

simulation

Spherical cavity

Analysis using the simulation...

Why is hole coupling decreasing ?

 $\lambda = 45 \ \mu m$ Extraction= 1.7 %

simulation

Toroidal cavity

simulation

Toroidal cavity

Spectral Gaps :

(1) Bad output coupling by the hole

(2) Increasing of cavity losses, due to bad fitting of the wave on waveguide entrances

analytical model :

Analytical model :

- using theory of modes dephasing in waveguide
- gives the wavelength distribution of Spectral Gaps
- gives the number of Spectral Gaps in the FEL spectral range

Waveguide modes distribution

dephasing of mode q <u>in the waveguide</u> : length L, size b

$$\phi_q \cong \frac{2\pi L}{\lambda} \left(1 - \frac{\lambda^2 q^2}{8b^2} \right)$$

dephasing between modes q=1 and q=3 : intensity on Z axis => only odd modes

$$\Delta \phi = \phi_1 - \phi_3 = \frac{2\pi L}{b^2}$$

dephasing for 2 following Spectral Gaps :

$$\Delta \phi(\lambda)$$
$$\Delta \phi(\lambda') = \Delta \phi(\lambda) + 2\pi$$

wavelength gap between 2 'Spectral Gaps':

$$\delta\lambda = \lambda' - \lambda = \frac{b^2}{2L}$$

Example : simulation for ELBE (small $\delta\lambda$)

Example : simulation for FELIX

FOM-Institute for Plasma Physics Rijnhuizen

CONCLUSION :

Number of Spectral Gaps in the FEL spectral range :

To reducing the number of 'SG':

- large waveguide aperture 'b' (square low)
- small waveguide length L

CONCLUSION :

- Spectral Gap phenomenon has been observed on various infrared FELs using a partial waveguide (mixing free-space and waveguide areas)

- the explanation of SG is quite complex, because :
 - (1) it is dependant on two independant parameters :
 - (a) hole coupling extraction rate
 - (b) optical losses in waveguide entrance
 - (2) coupling of waveguide modes in free-space areas

- (a) and (b) are strongly dependent on slight variations of the transverse mode profile, and can be uncorrelated.

- a simple analytical model gives an order of magnitude of the expected number of Spectral Gaps in the FEL range

- detailed analysis by simulation code : good agreement with measurements

