

A scheme for stabilization of output power of an X-ray SASE FEL

G.Geloni, E. Saldin, E. Schneidmiller and M. Yurkov

DESY/XFEL, Hamburg

Gianluca Geloni, FEL 2008, August 25th 2008

GEMEINSCHAFT

Stability of SASE FEL pulse energy

European XFEL: SASE1 at 1 Å 1E-3 E_{rad} [J] 1E-5 1E-7 1E-9 0 20 40 60 80 100 120 140 Z [m] 60 -50 rms fluctuations [%] 2 40 30 -20 -1 10-0 20 120 140 0 40 60 80 100 Z [m]

Exponential amplification, "controlled instability"

$$P \propto \exp(2z/L_g)$$

L_g depends on the current!

Curve 1: intrinsic fluctuations $\propto \sqrt{l_{coh}} / \sigma_z$ Curve 2: due to 10% variations of current (bunch compression factor)

Saturation helps, but...

Gianluca Geloni FEL 2008, August 25th 2008

Bunch compression (linearized)

The larger the compression factor, the tighter the tolerances

Two-stage compression for the European XFEL

C=100

Tolerances are tight: (a few) 0.01 degree for phases (a few) 10^{-4} for amplitudes

Stabilization scheme

Gianluca Geloni FEL 2008, August 25th 2008

5

Current-enhanced SASE

A. Zholents et al., Proc. of FEL'04 Conf.

Width of current spikes is comparable to (or larger than) FEL coherence length

Alternative way of compression: small R_{56} , CSR is strongly suppressed due to R_{51}

6

Longitudinal Space Charge (LSC)

- The most simple and robust collective effect
- Can be safely calculated
- Sufficiently strong for short wavelength

$$\sigma_{\perp} << \gamma \hbar << b$$

$$\propto \frac{\ln(\gamma \hbar / \sigma_{\perp})}{\gamma^2 \hbar}$$

"pencil" beam, free space

Ζ

Application to European XFEL

ORS: Optical Replica Synthesizer , being commissioned at FLASH , Talk THBAU04 , Shaukat Khan

Ti:Sa laser (800 nm), a few MW, energy modulation 100 keV, density modulation 5%

Important: laser power is strongly reduced - the job is done by LSC!

LSC: energy modulation 1.6 MeV

BC3: R56 is 3 mm

8

Gianluca Geloni FEL 2008, August 25th 2008

The European X-Ray Laser Project X-Ray Free-Electron Lase

Stability of peak current

Model of linearly compressed Gaussian bunch

Semi-analytical calculations of longitudinal dynamics from ORS through BC3

Variation of peak current (BC3) versus variation of compression factor (BC2)

Gianluca Geloni FEL 2008, August 25th 2008

9

FEL simulations

FEL code FAST, 1-D version, LSC after BC3 included

FEL properties:

-the same saturation length
(can be reduced if current is enhanced)
-pulse energy is reduced by 30%
(can be increased if current is enhanced)
-the same bandwidth

-pulse structure is different

Fluctuations of FEL pulse energy versus fluctuations of C Position along the undulator 90 m (strongest fluctuations)

Curve 1: stabilization scheme applied, curve 2: standard compression

Stabilization factor

For the same variations of compression factor, the fluctuations of SASE pulse energy are reduced by a factor 6 when the scheme is applied. Since compression is reduced by a factor 1.7, SASE fluctuations are reduced by a factor 10 for the same RF jitters.

Alternatively, aiming at the same level of SASE fluctuations, one can loosen RF tolerances by an order of magnitude.

Other options

Current enhancement is easily possible (for instance, by increasing compression factor in the main compression system back to its original value, and/or by changing parameters of the optically modulated beam and the chicane). Stabilization effect would then be reduced.

Realization of the scheme would automatically allow to use a method for timing an XFEL source to high-power laser (poster MOPPH01 G.Geloni, E. Saldin, E. Schneidmiller and M. Yurkov)

Conclusions

Scheme for XFEL output stabilization proposed

➢Realization at European XFEL can rely on ORS setup

➤Tolerances on RF parameters relaxed of 1 order of magnitude

≻Can be coupled to current enhancement

>LSC used in a constructive way \rightarrow laser power strongly reduced

