

Hotel Hilton, Gyeongju, Korea August 24 - 29, 2008

Statistical Analysis of Crossed Undulator for Polarization Control in a SASE FEL

Yuantao Ding, Zhirong Huang Stanford Linear Accelerator Center

Motivation

Polarization control is highly desirable for many x-ray FEL applications (magnetism, material studies, etc)

Elliptical Polarization Undulators (EPUs) are routinely used in spontaneous sources
I. mode liner index index

4. mode linear polarization under various angle dift of magnetic rows antiperviled

But...

- For x-ray FELs, undulator tolerance is very demanding.
- Slow EPU mechanical movement pretends fast polarization switching

Crossed Planar Undulator

s,

 \mathbf{s}_1

45

40

35

Wavelength (nm)

30

J. Bahrdt et al, Rev. Sci. Instrum. (1992)

S1,

0.0

-0.4

20

25

Apply to FEL oscillator (DUKE)

Crossed Undulator for SASE FELs

SASE is temporally chaotic with many random spikes

- Intensity fluctuates shot-to-shot
- Need a statistical analysis to quantify polarized SASE light using crossed undulator

1D simulation to Compare w/ Theory

Use soft x-ray (1.5 nm) LCLS parameters

Parameter	value	\mathbf{unit}
electron beam energy	4.3	GeV
relative energy spread	0(0.023)	%
bunch peak current	2	kA
transverse norm. emittance	1.2	$\mu { m m}$
average beta function	8	m
undulator period λ_u	3	cm
undulator parameter K	3.5	
FEL wavelength	1.509	nm
FEL ρ parameter	0.119	%
1D power gain length L_G	1.17	m
3D power gain length L_G^{3D}	1.48	m

 $L_2 = 1.3L_G = 1.53$ m is fixed

 P_x , P_y vs. L_1 (each point averaged over 200 SASE runs)

Stokes Parameters

Polarization can be generally described by Stokes parameters

They are related to the coherency matrix

$$\begin{split} S_0 &= J_{xx} + J_{yy}, \\ S_1 &= J_{xx} - J_{yy}, \\ S_2 &= J_{xy} + J_{yx} = 2\langle A_x(t)A_y(t)\cos(\theta(t))\rangle, \\ S_3 &= i(J_{yx} - J_{xy}) = 2\langle A_x(t)A_y(t)\sin(\theta(t))\rangle. \end{split}$$

A(t): field amplitudes; $\theta(t)$: relative phase between x and y

Total degree of polarization

$$P = \frac{\sqrt{S_1^2 + S_2^2 + S_3^3}}{S_0}.$$

Circular degree of polarization

$$P_c = \frac{|S_3|}{S_0}.$$

3D Simulation & Discussions

GENESIS simulation:

 $L_2 = 2.0 \text{m} (\approx 1.3 L_G), L_G \text{ is the 3D}$ gain length (1.48m);

 E_x diffraction in L2 included.

Calculated polarization from simulations $P \sim 0.87$ at L1 = 23m.

SASE selects a single transverse mode by exponential gain > 1-D analysis holds for the guided mode;

Diffraction effect (for free propagating E_x) is small for x-rays in a short L₂ undulator

Summary

- Arbitrarily polarized light from SASE FELs can be generated using crossed undulator
 - → polarization over 80% near SASE saturation;

Analytical results agree with simulations in exponential gain regime;

Pulsed dipole magnets may be used for fast polarization switch, ~100Hz is possible.