

First Lasing below 7nm Wavelength at FLASH/DESY, Hamburg

Jörg Rossbach

University of Hamburg & DESY, Germany

- For the FLASH Team -

email: joerg.rossbach@desy.de

FLASH: The first FEL user facility for the soft X-ray regime

FLASH: over-all layout

FLASH/European XFEL technology

FLASH and European XFEL are basically very similar machines:

Acc. Module 6 installed \rightarrow 1 GeV/6.5 nm

Lasing at 6.5 nm

J. Rossbach: First Lasing below 7nm at FLASH/DESY

Lasing at 7.1 nm

Double slit diffraction patterns at 7.1 nm (0.15mm slit separation)

25 August 2008

J. Rossbach: First Lasing below 7nm at FLASH/DESY

Wave front: E. Ploenjes TUBAU03

FLASH

Preliminary Radiation Properties @ 6.9 nm Free-Electron Las

J. Rossbach: First Lasing below 7nm at FLASH/DESY

Harmonics

J. Rossbach: First Lasing below 7nm at FLASH/DESY

Performance at 7nm/train of 10 bunches

FLASH

Lasing with long bunch trains

25 August 2008

J. Rossbach: First Lasing below 7nm at FLASH/DESY

Peak brilliance

25 August 2008

J. Rossbach: Fi

Peak brilliance

#photons

 $\Phi =$ (pulse duration) · (spectral width)

photons:

Single pulse radiation energy

spectral width (0.1% units): Avg. spectrum

pulse duration:

Fluctuation of pulse energy due to start up from noise @ 13.7nm

Cross check:

1. Get coherence length from measured gain length

 $T_{rad} \cong 2\pi/(\text{FWHM spectral width of single shot spikes})$

- don't use width of avg. spectrum for cross check: spectral widening due to energy chirp within bunch !
- 2. Count # long. modes *M* from single shot spectra
 - OR extract *M* from fluctuation of pulse energy

(should be the same !) $\rightarrow |T_{rad} \cong M \cdot \tau_{coh}$

- 3. Cross check with numerical simulation & measurements of electron bunch profile

. Roehrs: MOPPH049

NOTE 1: Time domain measuments under way ! U. Frühling: NOTE 2: This all assumes flat top bunch profile ! THDAU01

FLASH @ FEL08

Injector	C.H.Boulware	THAAU05	Electron beam results from PITZ
	R. Spesyvtsev	TUPPH037	Slice emittance measuments at PITZ/Zeuthen
	J. Roensch	TUPPH038	Long. phase space measurement at PITZ
	Y. Ivanisenko T	JPPH079 SI	ice emittance measurements at PITZ
	S. Schreiber	FRAAU05	Cathode issues at the FLASH rf gun
Electrons	K. Honkavaara	FRAAU01	Status of FLASH
	B. Faatz	TUPPH063	Radiation damage of undulator
	M. Roehrs	MOPPH049	3D electron bunch measurement
	B. A. Winter	TUPPH066	Synchronization system
	B. Schmidt	TUPPH068	Observation of coherent micro-bunching
	F. Loehl	THBAU02	Demonstration of 40 fs synchronization
	S. Khan	THBAU04	Optical Replica Experiment
	S. Khan	TUPPH072	sFLASH: Seeding FLASH @ 30nm
	R.Tarkeshian	TUPPH051	Temporal overlap for seeding
	V. Miltchev	TUPPH003	HHG seeding
Photons 25 August 2008	E. Ploenjes B. Faatz M. Kuhlmann J. Zemella U. Fruehling Chr. Gutt	TUBAU03 TUPPH004 TUPPH069 TUPPH070 THDAU01 THDAU02	Wavefront measurments Polarization from crossed-planar undulator High-resolution online-spectrometer Timing of optical pulse trains Time domain measurement of pulse length Resonant magnetic scattering

FLASH, what a picture!

1st Round of User Experiments ended 3/2007

18 projects received beamtime>200 scientists60 institutes, 11 countries

> 25 publications already, many more to come

- 4 PRL
- 6 APL
- 1 Nature,
- **1 Nature Physics**
- **1** Nature Photonics

See, e.g.,

25 August 2008

J. Rossbach: http://hasylab.desy.de/facilities/flash/publications

total of 45 proposals, 13 rejected

377 twelve hour user shifts available in 18 months, 316 shifts allocated + \geq 10% management contingency \approx 350 shifts

	Number of 12 hour shifts		
Research fields	Requested (all 45 prop.)	Allocated	Percentage
Atoms, Molecules, Ions	247	61	25
Clusters	71	36	50
Imaging, Diffraction	90	53	59
<i>Plasma physics / Warm dense matter</i>	194	56	29
Solids, Surfaces	214	46	21
Methods/ Technology	157	64	41

New infrared undulator

- Located downstream of FEL
- Improved coherent THz diagnostics
- FIR pulse naturally synchronized to FEL pulse
- FIR transported into exp. hall for pump-probe
- Status: FIR pulse observed,

-overlap FIR and FEL pulses detected

Frequency domain diagnostics with THz rad. Free-Electron L in Hamburg

Single shot spectrum of coherent infrared radiation exhibits structure in the longitudinal density modulation $< 5 \mu m$!!

Need single shot spectrometer for wide IR bandwidth

FLASH

in Hamburg

aser

More room for users Quasi-simultaneous operation with 2 wavelengths

Outlook

2010 • •	 Installation 7th acc. Module → ~1.2 GeV/<5nm operation with 3rd harmonic cavity long bunch train operation
2009 • now •	 variable pulse and energy patterns beam stability (LLRF and beam based feedbacks) Seeding (sFLASH)
•	Proposal for a 2 nd FEL beamline 2 nd round of user experiments starts
2008 •	1 GeV beam energy: lasing at 6.5 nm
•	shutdown: installation 6 th module
2007 •	saturation at 13 nm achieved
2006	first lasing at 13 nm
2000 • 25 August 20(J. Rossbach: First Lasing below 7nm at FLASH/DESY

Lasing at 6.5 nm demonstrated.

Considerable user experience gained.

No show stopper visible.

Ambitious upgrade program launched.

Continuous progress towards XFELs.