

Commissioning off the test FEL at MAX-lab

Sara Thorin

F. Curbis, N. Cutic, F. Lindau, S. Werin; MAX-lab J. Bahrdt, M. Abo-Bakr, K. Holldack; BESSY GmbH

Layout of the FEL

Layout of the FEL

- 500 MeV injector
- Transport with compression
- Laser for gun and seeding
- FEL undulators and a chicane
- Diagnostics

The motivation for this project is to "examine" technologies and learn for MAX IV, as well as to educate PhD student FORMULERING??

Layout of the FEL

Photo cathode gun

RF gun ≈ 1.8 MeV Thermionic ++

Acceleration and compression

MAX-lab

Optical klystron

Modulator	Planar (ESRF)
Period	48 mm
# of periods	30
Min. gap	10 mm
K max	4.3

Chicane	
# of magnets	4
Gap	15 mm
B max	0.2 T

Poster: TUPPH006

Radiator	Apple II (BESSY)
Period	56 mm
# of periods	30
Min. gap	12 mm
K max	4.3

Laser system and seeding

Laser system and seeding

Progress of commissioning

Photo injector measuments

The phase of photo cathode emission was scanned within one RF cycle to determine the ideal emission phase

Measurements corresponds well to simulations

Photo injector measuments

A quadacan was performed right after the gun energyfilter to determine the emittance for different currents.

Increasing the laser energy increases the extracted current. As much as 1 nC has been produced but in this case the emittance is too high for good FEL performance.

THz radiation from the dumpmagnet was measured When the bunches become shorter, more THz radiation is produced

Poster: TUPPH006

MAX-lab

MAX-lab

Summary and outlook

....

Progress

- Gun: Successfully turned into a photo injector for the FEL
- Transport: The electron are transported all the way through the electron beam line and the optical klystron
- Compression: the compression scheme has been confirmed though THz radiation measurements
- Undulators: are operating and have been calibrated

The next step

- Achieve transversal and longitudinal overlap of electrons and laser
- Start seeding to produce coherent radiation at the second harmonic 132 nm
- Start producing even lower wavelengths, at the third and fifth harmonic (88 and 53 nm)
- Seed the FEL at shorter wavelength using HHG

