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Abstract

We perform a linear analysis of Maxwell-Vlasov equa-
tion for Smith-Purcell Backward Wave Oscillator, includ-
ing the energy spread of the initial beam distribution. We
use this analysis to study the dependence of start current
on the energy spread of the initial electron beam distribu-
tion. The effect of beam emittance is also included through
the equivalent energy spread. Results of linear analysis are
compared with full nonlinear numerical simulations.

INTRODUCTION

Smith-Purcell (SP) free-electron laser in the terahertz
(THz) regime using a low energy electron beam is a back-
ward wave oscillator (BWO) [1,2]. The effect of energy
spread on the performance of a BWO having corrugated
wall waveguide structure have been performed numeri-
cally [3] as well as as analytically [4]. However, previous
analyses of SP-BWO [1,2,5,6] have ignored the effect of
finite energy spread in the electron beam. The effect of fi-
nite energy spread is to increase the start current, which is
defined as the minimum electron beam current required for
coherent electromagnetic oscillations to grow in the BWO.
In addition to this, the energy spread also reduces the sat-
urated power level attained in SP-BWO. In this paper, we
present an analysis of the effect of energy-spread on the
performance of SP-BWO using Maxwell-Vlasov equations
in the linear regime. The results of linear analysis are com-
pared with nonlinear simulation results. Using numerical
simulations, we also study the effect of energy spread on
saturated power.

In the next section, we present the linear analysis and
use it to study the effect of energy spread on start current.
Results of analytic calculation and comparison with one-
dimensional numerical simulations are discussed in the fol-
lowing section. The equivalent energy spread arising due
to finite emittance and its effect on the start current is then
discussed and finally, conclusions are presented in the last
section.

LINEAR ANALYSIS

We start with a brief description of the SP-BWO system.
The schematic of a SP-BWO is shown in Fig. 1 along with
the coordinate system. As shown in Fig. 1, a sheet elec-
tron beam propagates at a height d from the top surface of
a reflection grating, with a speed ¢ along z-axis, where ¢
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is the speed of light. The grating has grooves of width w
and depth h and extends uniformly to the positive and neg-
ative x-direction and we assume the system to have trans-
lational invariance in z-direction. The length of the grating
and its period are L and A, respectively. In a SP-BWO,
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Figure 1: Schematic of a Smith-Purcell BWO.

the electron beam interacts with the co-propagating surface
electromagnetic mode supported by the grating. The co-
propagating surface mode has a group velocity in the di-
rection opposite to the electron beam for low electron beam
energy. The evolution of the backward surface mode due to
interaction with the co-propagating electron beam can be
described using following Maxwell-Lorentz equations [2].
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where, the notations used are described in Ref. [2]. Here,
£ is the dimensionless complex electric field of the surface
mode, &, is the dimensionless complex space charge field,
J is the dimensionless beam current, @ = (J/xL)(x1 —
e?l'od) is the space charge parameter, Iy = ko /7, ko is
the z-component of the wave-vector of the surface mode,
v is electron energy in units of its rest mass energy, T is
the dimensionless time, { = z/L is the normalized distance
along the grating, v; is the phase of i’ electron, 7; is the
dimensionless relative energy of the i electron and y and
x1 are related to the singularity associated with the surface
mode as defined in Ref. [2].
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The nonlinear analysis of the interaction of electron
beam with the surface mode in a SP-BWO can be done
using the above set of equations and solving them numeri-
cally [2]. For a given 7, the dynamical variables v; and 7;
of electrons are propagated in { using Egs. (2,3) provided
& and &, are known functions of (. We then propagate £
and &, in 7 using Eqgs. (1,4). The evolution of the system
is thus understood by solving these equations self consis-
tently.

The linear analysis can be performed by writing down
the linearized Vlasov equation coupled with Maxwell
equation. We define the distribution function f(¢,n,(, 7)
as proportional to the number of electrons per unit interval
in ¢ and 7 at given location ( at time 7. Note that the nor-
malization condition of the above distribution functions is
given by

1 +oo 27
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The Vlasov equation for the distribution function, using
Eqgs. (2-3) can be written as
of . 9of
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For a given 7, the distribution function is propagated in (
using the above Vlasov equation. The amplitude of electric
field in surface mode and the space-charge field is prop-
agated in 7 using Egs. (1,3), which are Maxwell equa-
tions. The coupled Maxwell-Vlasov equtions should be
solved self-consistently to find out the evolution of the sys-
tem. This approach is more suitable for performing analyt-
ical calculations if we want to include the effect of energy
spread.

We can express the distribution function as a sum of un-
perturbed part and the perturbed part as follows

f(@/%??; C;T) = fO(’l/};n; C) + 6f(1/}777; C)em—; (7)

where the unperturbed part fo(¢,7, () is the distribution
function in absence of any electromagnetic field. Here, we
have assumed e”” type time dependence for the perturbed
part in order to perform linear analysis. We use this time
dependence for £ and &, as well. Similarly, we can as-
sume e”¢ type space dependence for &, &, and Jf. Do-
ing this, we obtain the following form of linearized Vlasov
equation
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We then multiply the above equation with e~*¥ and inte-
grate with respect to ¢ and obtain
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On the other hand, putting e”” type time dependence and
"¢ type space dependence for £ in Eq. (1), we obtain the
following equation

1
27T0

27
(v—r)E=-J Sfe "W dipdn. (10)
Combining Eq. (9) and (10), we obtain the following dis-
persion relation

@—m%=m7+Q@—mH/ folm)dn (1)

(K +1n)?
Above is the generalized form of the dispersion relation
obtained previously [2]. Note that for monoenergetic elec-
tron beam, if we put fo(n) = J(n), we get back the result
obtained in Ref. [2]. By putting the given initial energy
distribution of the electron beam, we can evaluate the inte-
gral on the right side of the above equation and thus intro-
duce the effect of finite energy spread. We assume a step
function energy distribution given by fo(n) = 1/2An for
—An < 1 < +An and fo(n) = 0, otherwise. For this
energy distribution, we obtain the following dispersion re-
lation, which is cubic in &

(K + A = Q)(v — k) = i

Note that Ay is related to energy spread Aymc? by the
relation Any = koLA~y/B?v3. Here, mc? is the rest mass
energy of the electron. For a given value of v, the above
cubic equation gives three possible solution k1, Kk, and k3
for k. Hence, the more general solution for evolution of £
has the form

5 = €UT[A1€K1< + ‘/426’62C + Ag@ﬁsg].

12)
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The possible values of v are obtained by satisfying the
boundary conditions, which are:

5|C:1 =0, (14)
//e*wafdipdnk:o =0, (15)
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These boundary conditions are to be satisfied for 7 > 0.
The first boundary condition here implies that there is no
input field in the surface mode at the exit of the grating
(¢ = 1). Note that in a BWO, the surface mode gets am-
plified in the direction opposite to that of the electron beam
and hence, the input electric field in the surface mode needs
to be specified at the exit of the grating. The second bound-
ary condition implies that there is no microbunching in the
electron beam at the entrance to the grating (( = 0). The
third boundary condition implies that there is no energy-
phase correlation in the electron beam at the grating en-
trance. These boundary conditions lead to the following
condition

(5] — Q)(r2 — Kg)e"™ + (k3 — Q) (ks — k7)€"

+(K2 — Q)(k1 — K2)e™® = 0. (17)



Proceedings of FEL08, Gyeongju, Korea

The above equation is same as obtained earlier in Ref. [2]
for the case of mono-energetic electron beam. The effect
of the finite energy-spread is seen only in the dispersion
relation (Eq. (12)). For a given J, @ and Ar, the above
equation is a transcendental equation in v since k1, k2 and
k3 are functions of v through Eq. (12). One can then solve
the above equation numerically. We find that there exists
a threshold value 7, above which the real part of v is pos-
itive. This dimensionless start current 7, is a function of
An.

In our analysis so far, we have not taken the effect of at-
tenuation due to finite conductivity of grating material and
also the reflection at the two ends. Maxwell-Lorentz equa-
tion for the case where these effects are included are dis-
cussed in Ref. [6]. Using these modified Maxwell-Lorentz
equations and following the approach discussed in this pa-
per, we can easily show that Eq. (12) and (17) get general-
ized to the following form

K2+ A —Q)v+aL —k)=1iJ. (18)

Re-oke AT (5 — Q) (k2 — ha)
+(63 = Q) (ks — k1) + (k5 — Q)(k1 — £2)]
+(k] — Q) (k2 — K3)e" + (K3 — Q) (K3 — K1)e"™

+(k% — Q) (k1 — K2)e™® =0, (19)
where « is the attenuation coefficient of the surface mode
due to finite conductivity of grating material [5], d; = (8+
B4) /(B = Bg), By is the group velocity of the surface mode
in units of ¢, R = —popL, po and py are the complex
reflection coefficient at the entrance and exit of the grating
respectively [6].

The above two equation can be used to find out the di-

mensionless start current Js as a function of @), An, aL
and R.

RESULTS AND DISCUSSIONS

Using the results of the previous section, we calculate the
dimensionless start current as a function of energy spread
as shown in Fig. 2. This is an universal curve valid for
SP-BWO, independent of any parameter. Note that here
we have taken () = 0, « = 0 and R = 0. We find that
as the energy spread increases, the start current increases.
For different values of a L., we can get a family of curves.
Next, we present the comparison of the result of analytic
calculation with that of the numerical simulation. For nu-
merical simulation, we have extended our earlier computer
code for SP-BWO [2] to include the energy spread in the
electron beam. We used the parameters used in Ref. [7],
which are (y— 1)mc2 =35keV, Ay =173 pm, h =130 ym,
w =110 yum, A = 27/Bko = 761 pym, oL = 0.59(1 - ), d
=22.6 pm and Az = 5.00 mm. Here, Az is the width of
the sheet beam in z direction. For these parameters, Js is
obtained to be 11.1 for An =2.0. The relationship between
the dimensionless start current and the start current is given
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Figure 2: Dimensionless start current J; as a function of
energy spread An, for @ = 0,aL =0, R = 0.

by [2]
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where 14 = 17 kA is the Alfvén current. Hence, 7, = 11.1
corresponds to a start current of 38 mA for these param-
eters. Note that Ay = 2 implies that rms energy spread
Aymc?® = 346 eV, which means that the relative energy
spread is ~ 1%. Note that for DC electron guns, an energy
spread much smaller than this can be produced. But, for
a pulsed gun, an energy spread of 1% could be a typical
value. Fig. 3 shows the evolution of power for different
beam currents for the above parameters. We find that the
power starts building up after a current of 40 mA. This is
in good comparison with the start current of 38 mA as cal-
culated from our analytic calculation. We have also studied
the effect of energy spread on the saturated behavior of SP-
BWO. Fig. 4 shows the evolution of power in the surface
mode for different values of energy spread. We find that as
the energy spread increases, the saturated power decreases.
Note that for the parameters chosen, the operating current
of 45 mA is close to the start current of 40 mA for Ay
= 2.0. Hence, as Ay approaches 2.0, the saturated power
becomes very small.

It is important to point out that if the electron beam has
a finite normalized rms emittance €, and is focused to a
rms beam size o, then the electrons would have a spread
in transverse momenta as well as in longitudinal momenta.
The spread in the longitudinal component of velocity can
be calculated as follows. If electrons have rms spread 6 in
divergence, their longitudinal velocity v, will have a spread
v,6?/2. This gives rise to an rms energy spread Aymc?,
where A~ is given by

Is:js

(20)
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Figure 3: Evolution of power in the surface mode in SP-
BWO for different values of beam current as calculated by
numerical simulation. Parameters used in the numerical
simulation are described in the text.
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Figure 4: Evolution of power in the surface mode in SP-
BWO for different values of An as calculated by numeri-
cal simulation. Beam current is taken to be 45 mA. Other
parameters used in the numerical simulation are described
in the text.

which can be converted to An using the formula described
in the previous section. We can use our analysis to find
out the value of emittance that can be tolerated such that
the start current and the saturated power does not get ef-
fected significantly. Here, we apply the above formula in
the vertical direction. For the example discussed earlier in
this Section, o, = 11.3 pm. Applying the above formula,
and using the result that An = 1.0 can be easily tolerated as
seen from Fig. 4, we find that we can in principle tolerate

FEL Theory
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€ny Up to 2.8 %10~ 7 m-rad , provided that required field
can be produced to focus the beam to the vertical rms size
oy = 11.3 pm with this emittance.

Note that in this paper, we have considered only the
step function initial energy distribution for simplicity in
the calculation. It is possible to do a general analysis for
an arbitrary symmetric energy distribution, using asymp-
totic series expansion for integral in Eq. (11) as described
in Ref. [4].

CONCLUSIONS

We have shown that using linearized Maxwell-VIasov
equations, we can calculate analytically the start current
in an SP-BWO as a function of energy spread and other
parameters like attenuation due to finite conductivity, re-
flection at grating ends and the space charge. The analytic
calculation has been found to compare well with the results
of numerical simulation. The saturated power as a function
of energy spread has been studied using these numerical
simulations. We have also discussed the equivalent energy
spread arising due to finite beam emittance and focusing,
using which we can find out the effect of emittance on the
performance of SP-BWO.
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