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Abstract 

Radiation start-up is important in the simulation of vir-
tually all free-electron laser (FEL) configurations. We 
discuss two different shot noise models that are imple-
mented in both 1-D wiggler-averaged (PERSEO) and 
non-wiggler-averaged (MEDUSA1D) simulation codes, 
and a 3-D, non-wiggler-averaged (MEDUSA) formula-
tion. Three-dimensional correction factors have been in-
cluded in the MEDUSA1D and PERSEO, and all three 
codes are in remarkable agreement on the fundamental 
and harmonics. 

INTRODUCTION 
Radiation start-up in free-electron lasers (FELs) is im-

portant in simulating all configurations including oscilla-
tors [1,2] and amplifiers [3-6] in both seeded-MOPA 
(Master Oscillator Power Amplifier) and SASE (Self-
Amplified Spontaneous Emission) modes. Both oscilla-
tors and SASE amplifiers start up from shot-noise, which 
is due to the random fluctuations in the electron phase 
distribution. The seed in a MOPA usually overwhelms the 
shot-noise; however, the noise must be treated correctly to 
model harmonics. 

The inclusion of shot noise in Particle-in-Cell (PiC) 
simulations has been described by McNeil et al. [6]; how-
ever, because of the computational requirements imposed 
by PiC simulations, most FEL simulation codes average 
Maxwell’s equations over the fast wave time-scale, and 
this is the type of formulation we will consider. Within 
the context of this fast-time-scale averaging, there are two 
models corresponding to either wiggler-averaged- or non-
wiggler-averaged orbit dynamics. Wiggler-averaged-orbit 
codes include GINGER [5], GENESIS [6], and PERSEO 
[7] among others. The non-wiggler-averaged-orbit ap-
proximation has been used in both 1-D [8] and 3-D [9,10] 
in the MEDUSA1D and MEDUSA codes respectively.  

The simplest way to include shot-noise is to introduce a 
random component to the initial phases, ψ0, of the macro-
particles such that |<exp(iψ0)>| = 1/√Ne, where Ne is the 
number of correlated electrons. The rationale for choosing 
Ne differs depending upon whether the simulation is per-
formed in the steady-state or with slippage included. It is 
assumed in steady-state that each “beamlet” interacts 
identically with the radiation so that only one such beam-

let is needed. The number of electrons per slice, ne, is 
given by ne = Ibλ/eυb, where Ib is the beam current, λ is 
the wavelength, e is the electronic charge, and υb is the 
bulk axial velocity. The total number of interacting elec-
trons, Ne, includes contributions from multiple slices and 
is given by [11]  

                
Ne ≅ 4.3

Lg

λω
ne = 4.3

Lg

λω

Ibλ
eυb

  ,                    (1) 

where λw denotes the wiggler period, and Lg is the field 
exponentiation length. In time-dependent simulations, we 
choose an integration window that is many “slices” in 
length, although the number of “slices” used in simulation 
is usually less than this total. We find by trial and error 
that it is usually necessary to have at least one slice ap-
proximately every three wavelengths. Thus, each slice 
included in the simulation is separated by some distance 
Δλs, and the number of interacting electrons is 

                                        

                       Ne =
Δλs

λ
ne =

IbΔλs
eυb

 .                           (2) 

We present three new contributions to the literature 
dealing with shot noise in FELs. First, we describe and 
directly compare two algorithms for describing shot noise 
in FELs, which differ from those discussed in the litera-
ture. Second, we compare the shot noise algorithms in 
two very different simulation codes one of which uses 
wiggler-averaged orbit dynamics (PERSEO) and the other 
(MEDUSA) does not. Third, we self-consistently include 
harmonics. 

THE NON-WIGGLER-AVERAGED 

FORMULATION: MEDUSA 
The 1-D (MEDUSA1D) and 3-D (MEDUSA) non-

wiggler-averaged-orbit formulations treat the electron 
dynamics in the same way and the shot-noise model is 
identical in both simulation codes. In the absence of shot-
noise, particles are loaded into the 2-D phase space of the 
1-D formulation or the 6-D phase space of the 3-D formu-
lation using  Gaussian quadrature in each of the degrees 
of freedom. This is deterministic and we assume that the 
additional degrees of freedom describing the beam (γ0 in 
one dimension, and x0, y0, px0, py0, and γ0 in three dimen-
sions) do not vary with the initial phase ψ0. As a result, 
each choice of ψ0 is associated with an identical distribu-
tion of particles in the additional degrees of freedom. We 
choose an initial loading in ψ0 such that   
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                      1
2π

dψ0 exp iψ0
0

2π
= 0 ,                    (3) 

 
for one choice of (x0,y0,px0,py0,γ0) so that it will also 

vanish for all such choices, and we will have ensured a 
“quiet-start”. Particles are loaded in ψ0 using an Nth order 
Gaussian quadrature. It is found empirically that Gaussian 
quadrature ensures that the average <exp(iψ0)> vanishes 
to within round off error with about 8 particles in phase. 
If it is desired to include up to the hth harmonic, then more 
particles are needed and a rule of thumb is that h-times as 
many particles are needed as for the fundamental. Since 
<exp(ihψ0)> also vanishes the “quiet-start” is implicitly 
obtained for the fundamental and all harmonics. 

We start with the unperturbed choice for the initial 
phase {ψ0j} to include shot-noise and introduce a pertur-
bation to obtain a new distribution {ψ ′0j}. The procedure 
is similar, but not identical, to that used by Fawley [4] and 
we write 

 

               ψ0 j
' = ψ0 j + δψhΣ

h = 1

h max
sin h ψ0 j − φ  ,         (4) 

 
where δψh (<< 1) is chosen to describe the Poisson sta-

tistics, and φ is chosen randomly over the interval [0,2π]. 
Note that <sin(hψ0)> = <cos(hψ0)> = 0 and that 
<sin2(hψ0)> = <cos2(hψ0)> = ½, hence 

                               

             sin hψ0
' ≅ − 1

2 hδψh sin hφ  ,                 (5)
                               

           cos hψ0
' ≅ 1

2 hδψh cos hφ  ,                     (6) 
 
to lowest order in δψh. If hδψh = δψ1 and δψ1 = 2/√Ne, 

then 

                   
exp ihψ0

' ≅ 1
2δψ1 = 1

Ne
  ,                (7) 

and we recover the correct Poisson statistics. 

THE WIGGLER-AVERAGED 

FORMULATION: PERSEO 
PERSEO [11] is the name of a library of functions de-

voted to the simulation of FEL dynamics in the Mathcad 
environment. Functions for the generation of phase space 
variables, for the solution of the pendulum-like equation 
and for manipulating the phase space in a number of de-
vices are available. These functions are combined in order 
to model specific FEL configurations. The particle load-
ing algorithm uniformly distributes n particles in the in-
terval (0,2π) and has a null harmonic content at the fre-
quency 2πc/λ0. The introduction of the desired harmonic 
content in the beam distribution is obtained by shifting the 
particle positions from the equally spaced configuration. 
A random shift doesn’t ensure the correct statistics at the 
higher harmonics. By applying the following rule 

 

               ψk = ψm +
2π
n 1 − δ k − n − 1

2  
,               (8)  

 

where k = 0, … , n − 1. It can be shown that the Fourier 
coefficient of the distribution at the hth harmonic has 
phase ψm and amplitude δ independent of the harmonic 
order. The normalized Fourier coefficient is 

     
b h = 1

n dψ exp ihψ δ ψ − ψkΣ
k  

          = 1
n exp ihψm

sin 2πh 1 − δ

sin
2πh

n 1 − δ
 .                    (9) 

 
In the limit of large n and δ→0 we have bk ≅ b = 

δexp(ihψk).   
A specific function in PERSEO library accepts as input 

the complex coefficient b and returns a set of particles 
distributed in phase. At startup the evolution of the differ-
ent harmonic components in an FEL are not coupled. For 
this reason the correlation between the bunching factors at 
different harmonics do not provide substantial physical 
effects. In comparison with the method implemented in 
MEDUSA and other methods existing in literature, the 
bunching coefficient is not affected by any statistical un-
certainty and by itself does not reproduce any Poisson 
statistical behavior expected from shot noise. The user 
from the Mathcad environment has the ability to select 
amplitude and phase of the fundamental harmonic bunch-
ing. In order to reproduce noise factors resembling the 
shot noise, the amplitude is generated from the Poisson 
number generator within Mathcad. According to the sam-
pling of the longitudinal current the noise factor ampli-
tude and rms fluctuations are proportional to  
[I(ζ)Δζ/ce]1/2 i.e. to the root of the number of “real” elec-
trons represented by the specific time slice at position ζ. 
The phase is randomly selected in the interval (0,2π). This 
permits the reproduction of different statistical behavior 
related to the current variations. 

NUMERICAL ANALYSIS 
We now describe the simulation results obtained using 

both PERSEO and MEDUSA1D and MEDUSA. In 3-D, 
we compare PERSEO and MEDUSA1D with MEDUSA 
where we have included scale factors in the 1-D formula-
tions intended to describe the filling factor, effective in-
crease in the energy spread due to the emittance, and dif-
fraction. The fundamental parameters are as follows. The 
electron beam energy and peak current are 200 MeV and 
110 A respectively, with a radius of 95.3 microns, an en-
ergy spread of 0.01% and a normalized emittance of 1 
mm-mrad. The wiggler period is 2.8 cm with a peak on-
axis amplitude of 7.46 kG. In 3-D, we assume that the 
wiggler has two-plane focusing. The fundamental reso-
nance is at about 265 nm. 

In comparing PERSEO and MEDUSA1D in 1-D, we 
do not include any ad hoc 3-D corrections for the emit-
tance, filling factor, or diffraction. Hence, the energy 
spread is assumed to be 0.01%, and the filling factor is 
unity. 
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Figure 1:  Comparison of time-dependent simulation re-
sults for PERSEO and MEDUSA1D in the SASE regime. 
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Figure 2: Fundamental spectra at saturation (7.055 m) 
from (a) MEDUSA1D and (b) PERSEO. 

We describe a full SASE configuration where the fun-
damental and the harmonics start up from noise. The evo-
lution of the pulse energies of the fundamental and the 3rd 
and 5th harmonics in the case of a full time-dependent 
SASE simulation is shown in Fig. 1. Here we note that 
PERSEO and MEDUSA1D are in good agreement for the 
fundamental up to and somewhat past the saturation point 
at about 7.1 m and an energy of 71 μJ. The evolution of 
the harmonic energies are also in close agreement up to 
and somewhat beyond saturation. 
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Figure 3: Third Harmonic Spectra at 7.055 m from (a) 
MEDUSA1D and (b) PERSEO. 

 
The fundamental and 3rd harmonic spectra from 
MEDUSA1D and PERSEO at the saturation point of the 
fundamental (7.055 m) are shown in Figs. 2 and 3. As in 
the case of the spectra for the SASE example, the com-
parisons between MEDUSA1D and PERSEO are very 
good and exhibit comparable pulse widths and noise 
floors. 

We now compare 3-D simulations using MEDUSA 
with results from PERSEO and MEDUSA1D. The pa-
rameters we use in the three-dimensional simulations dif-
fer somewhat from what we used in 1-D. In this case, we 
assume a beam kinetic energy of 100.75 MeV, a peak 
beam current of 270 A, a normalized emittance of 4 mm-
mrad, and an energy spread of 0.1%. The bunch is as-
sumed to have a parabolic profile with a duration of 2.5 
psec, which yields a bunch charge of 450 pC. The planar 
wiggler has equal focusing in both planes with a period of 
3.89 cm, a total length of 10 m, and a peak, on-axis am-
plitude of 3.03 kG (Krms = 0.778), which yields a reso-
nance at a wavelength of 795 nm. We treat a seeded am-
plifier for the three-dimensional simulations with a pulse 
length equal to that of the electron bunch and a peak 
power of 4 kW, and this yields an seed energy of 6.67 nJ. 
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Figure 4: Comparison of time-dependent simulations be-
tween MEDUSA and (a) MEDUSA1D, and (b) PERSEO. 

 
We simulate a SASE example where the fundamental 

and the harmonics start up from noise. We include a 
simulation window of 7 psec in width with a total of 700 
slices. The evolution of the fundamental and the 3rd and 
5th harmonics as found in MEDUSA and MEDUSA1D 
are shown in Fig. 4a. Overall, the agreement between the 
1-D and the 3-D simulations is reasonably good. Note that 
the wiggler length is too short to reach saturation. Be-
cause of this, the fundamental is in the linear regime 
where the energy has not grown to a level where the har-
monics experience strong nonlinear growth, although this 
has begun for the 3rd harmonic near the end of the wig-

gler. A similar comparison between MEDUSA and 
PERSEO is shown in Fig. 4b where the agreement be-
tween the two codes is also reasonably good. 

SUMMARY AND DISCUSSION 
In this paper, we have discussed two different algo-

rithms for describing shot-noise in FELs that treat the 
start-up of both the fundamental and harmonic radiation. 
Comparison between PERSEO and MEDUSA1D, are 
very good for both the fundamental and harmonics. This 
is all the more remarkable considering that the two formu-
lations are differ in almost every aspect Further, 3-D cor-
rection factors were included in MEDUSA1D and 
PERSEO and comparison with MEDUSA also shows 
reasonable agreement. 
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