

Ultra-Fast Harmonic Resonant Kicker Design for the MEIC Electron Circular Cooler Ring

Yulu Huang^{1,2}

H. Wang¹, R. A. Rimmer¹, S. Wang¹, J. Guo¹, Y. Zhang¹

1. Thomas Jefferson National Accelerator Facility, Newport News, VA,23606 2. Institute of Modern Physics, Chinese Academy of Science, Lanzhou, Gansu,730000

Contents

- ☐ Introduction
 - MEIC Cooling Scheme
- ☐ Ultra-Fast Kicker Design
 - Concept Description
 - Cavity Design
 - Power Estimate
 - Tuner and Coupler Design
- □ Conclusion

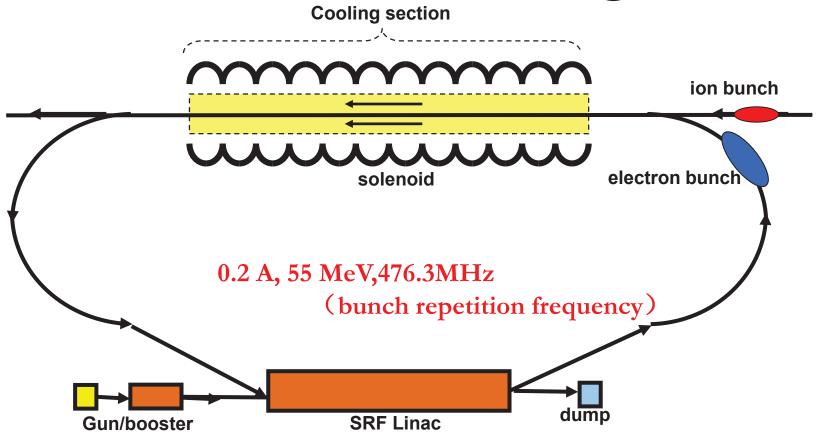
Introduction

- Electron cooling is essential for achieving high luminosity for MEIC
- High energy bunched electron cooling is part of the multiphased cooling scheme for MEIC
- To achieve very high current for bunched beam cooling in the future high luminosity upgrade, we adopt a circulator ring to reuse the electron bunches
- An ultra-fast kicker (less than 2.1 ns ,476.3MHz) is required for this circulator ring
- *We start an R&D proposal to develop such a kicker
- Our approach is to generate a series harmonic modes with RF resonant cavities
- ❖ Every 10th bunch in a 476.3MHz bunch train will be kicked while all the other bunches un-kicked with the designed prototype cavities

MEIC Multi-Phased Electron Cooling

Reduce/maintain emittance

High Luminosity!

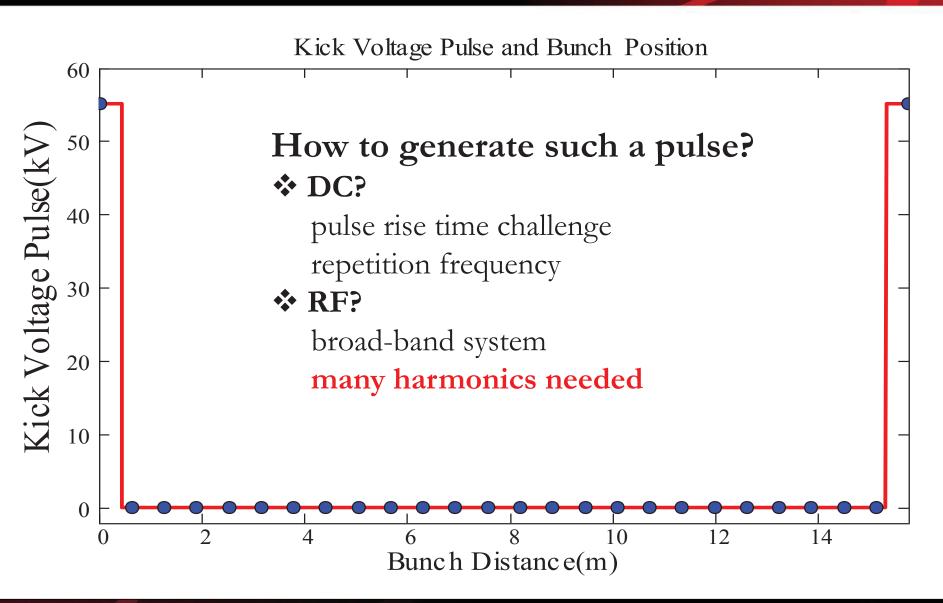

same velocities \rightarrow same γ factor

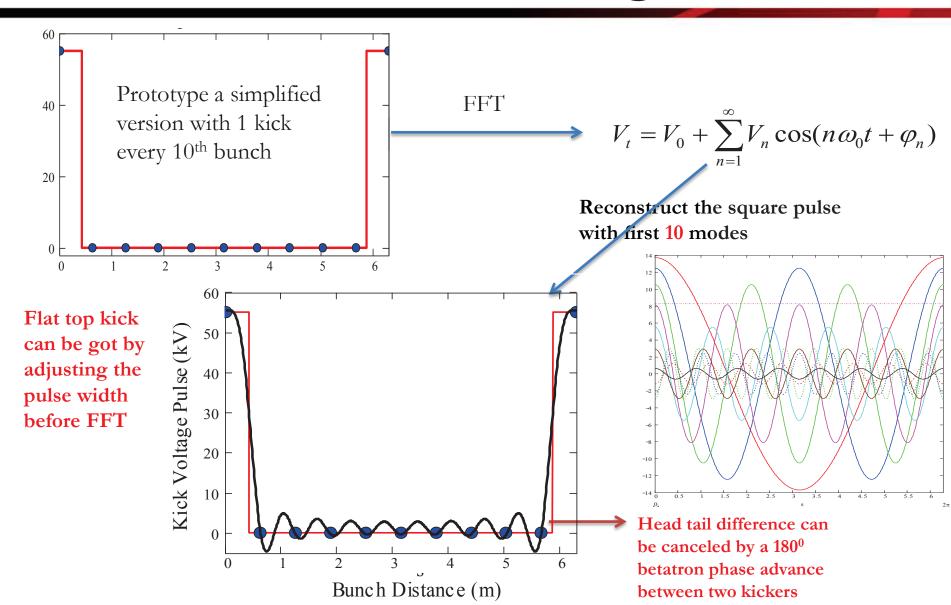
	Phase	Function	Proton kinetic energy (Gev/u)	Electron kinetic energy (MeV)	Cooler type
Booster	1	Assisting accumulation of injected positive ions	0.11 ~ 0.19	0.062 ~ 0.1	DC
	2	Emittance reduction	2	1.09	
Collider ring	3	Suppressing Intra-Beam Scattering and maintaining emittance during stacking of beams	7.9	4.3	Bunched Beam Cooler
	4	Suppressing Intra-Beam Scattering and maintaining emittance during collision	100	55	(ERL)

Single Turn ERL Cooler Scheme in

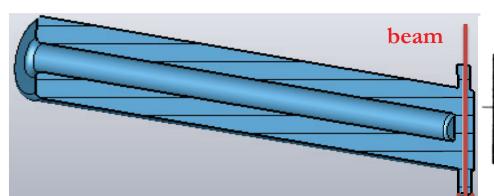
MEIC Baseline Design

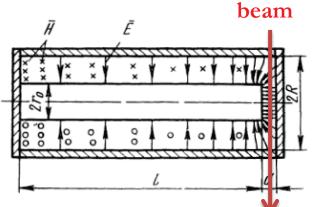
High Luminosity Upgrades

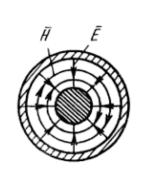

Need High Current!

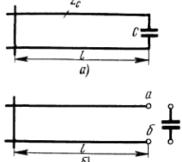

55kV(1 mrad kick angle)

Ideal Kick Voltage Pulse Shapes

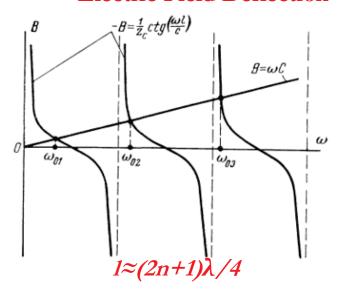



FFT of the Kick Voltage Pulse




How to Generate Harmonic Modes?

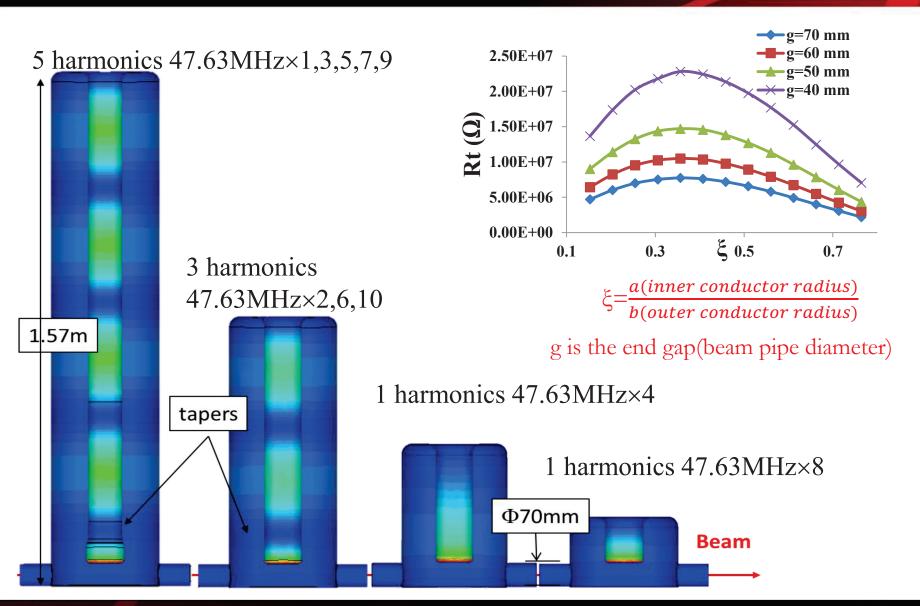
Quarter wave resonator with loading capacitor



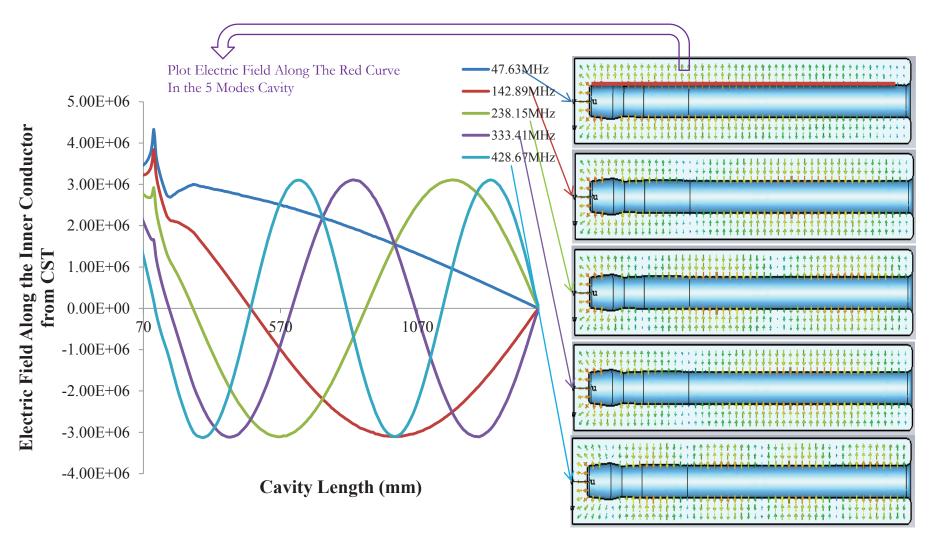
$$\omega C = \frac{1}{Z_0} \cot \left(\frac{\omega l}{c} \right)$$

Fix the cavity length, the gap distance, and the outer conductor radius

Taper the inner conductor (change Z_0) to make the frequencies to be harmonics.


Electric Field Deflection

Cavity Length related with Frequency



Cavity Model

Boundary Conditions

Just odd-integer multiples of the fundamental mode can be generate in one cavity!

M Cavities Needed for N Harmonics

Cavity #1	Cavity #2	Cavity #3	Cavity #4	Cavity #5
$(2n+1)\frac{f_0}{N}$	$(2n+1)\frac{2f_0}{N}$	$(2n+1)\frac{4f_0}{N}$	$(2n+1)\frac{8f_0}{N}$	$(2n+1)\frac{16f_0}{N}$

Here f_0 is the bunch repetition frequency in the Cooler ring (476.3MHz).

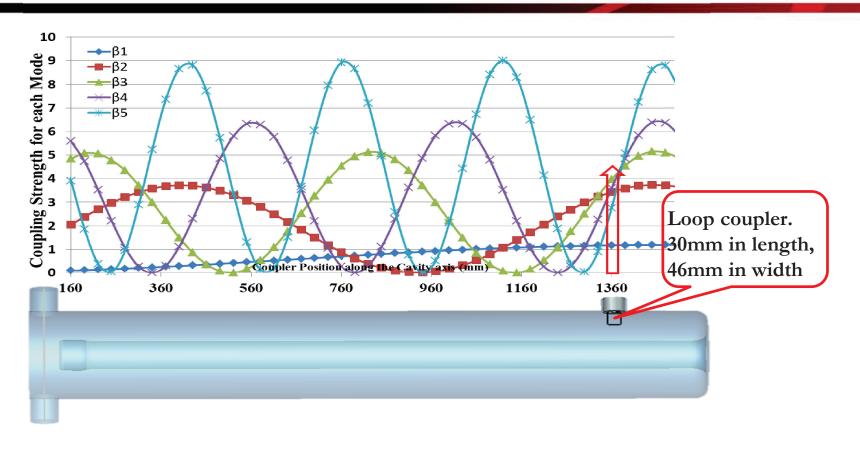
n=0,1,2,...

Relationship between Cavity number and Harmonics number:

$$2^M-1\leq N$$

4 cavities, 15 harmonics

5 cavities, 31 harmonics


Shunt Impedance and Power

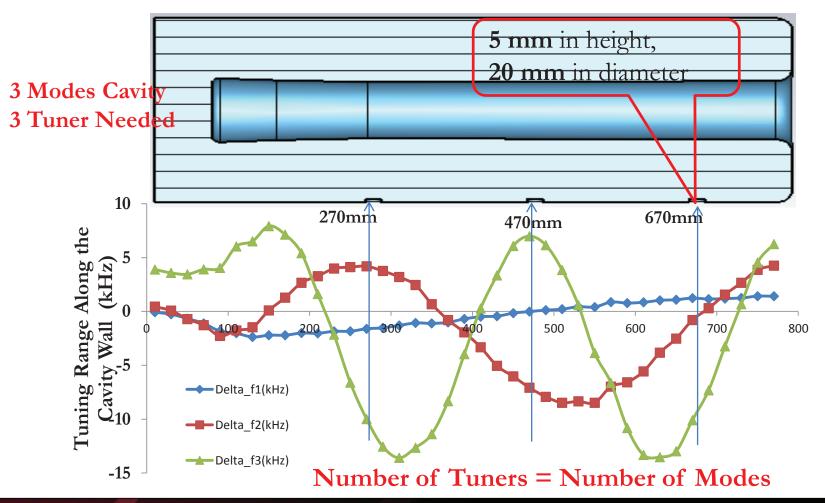
Mode	FFT Kick Voltage	CST Trans. Shunt	Dissipated
(MHz)	(kV)	Impedance (Ω)	Power
			(W)
47.63	13.711	7.13E6	26.37
95.26	12.462	1.14E7	13.62
142.89	10.532	4.09E6	27.12
190.52	8.1290	1.35E7	4.89
238.15	5.5030	3.14E6	9.64
285.78	2.9170	6.09E6	1.40
333.41	0.6300	2.65E6	0.15
381.04	-1.2090	1.65E7	0.09
428.67	-2.4320	2.40E6	2.46 Two to Three orders
476.3	-3.0110	4.57E6	1.98 of magnitude lower
DC	8.2760		than a strip-line kicker
Total	55.508	3.56E7	87.72

The **kick voltage** (amplitude with phase) is come from the FFT resultable. Transverse shunt impedance with TTF is calculated with CST Microwave Studio. (Cavity model is simplified, **straight line taper with no blending** is used to achieve the target frequency for each mode, beam pipe is not optimized.)

Input Loop Coupler Design

Fundamental mode has a lowest coupling strength but requires the highest power.1360mm is selected, the fundamental mode is critically coupled, and the higher modes are slightly over-coupled

Cavity Tuning Need Estimation


	Operation Frequency (MHz)	Q ₀ For 300K Copper	β	Bandwidth For 300K Copper (kHz)	Designed Frequency with Taper (kHz)	Error Frequency by Design (kHz)
	47.63	8586	≈1	≈11.09	47.62991	-0.09
	142.89	14689	≥1	≥19.46	142.8915	0.15
Five Modes Cavity	238.15	18973	≥1	≥25.10	238.153	3
Cavity	333.41	22472	≥1	≥29.67	333.4117	1.7
	428.67	25536	≥1	≥33.57	428.6718	1.8
/T1	95.26	12002	≈1	≈ 16.04	95.26267	2.67
Three Modes Cavity	285.78	20784	≥1	≥27.50	285.7868	6.8
	476.3	27056	≥1	≥35.21	476.3087	8.7
One Mode Cavity	190.52	15298	≈1	≈24.91	190.5267	6.7
One Mode Cavity	381.04	19435	≈1	≈39.21	381.0361	3.9

- Bandwidth is calculated for one-coupler system $\Delta f_n = \frac{f_n}{Q_{0n}} (1 + \beta_n)$
- Fundamental mode in each cavity is critical coupled, higher modes in the 5 modes and 3 modes cavities is over coupled.
- With an optimized taper design, harmonic frequencies without the tuner tunings can be designed within the bandwidths of operation modes.

Stub Tuner Design

Mistuning due to **manufacturing tolerance** can be tuned by **stub tuners** inserted into the cylinder wall.

Conclusions

☐ An Ultra-fast, high repetition rate(2.1ns,476.3MHz) kicker was conceptual developed. ☐ It's great power efficiency, just 87.72W. Cost-effective, just copper cavities in room temperature. Cavity RF design and Concept design of the stub tuner and loop coupler is done. ☐ Beam dynamics tracking is being study. ☐ Mechanical design, HOM damping will be studied. ☐ Prototype Cavity will be made ☐ Bench RF Measurement ☐ Future beam experiment?

