Development for Mass-Production of Superconducting Cavity by MHI

ERL2015 "ERL and SRF, Stability, Synchronization, Special Requirements, HOM Dumping"

June 10. 2015

MITSUBISHI HEAVY INDUSTRIES, LTD.

*K.Kanaoka, K.Sennyu, T.Tsuiki, H.Hara, T.Yanagisawa, K.Okihira, R.Matsuda

1. MHI's Work for ERL

- MHI's Work for KEK cERL
- RRR measurement of Cu plating
- 2. MHI's development histories for mass-production
 - Increasing production Line
 - Reducing the number of parts
 - Batch Process
- 3. Summary

1. MHI's work for ERL (cERL Injector Module)

OThis module conforms Japanese high pressure gas safety law

Assembly at KEK

1. MHI's work for ERL (cERL Main Accelerator Module)

Main Accelerator Module **Injector Module Electron gun** Electron cERL parameters - Energy: 35MeV - Beam Current: 10mA - Frequency: 1.3GHz Main Accelerator Module (9-cell cavity \times 2)

OThis module conforms Japanese high pressure gas safety law

Assembly at KEK

SRF electron gun					
(Collaboration with KEK)					
;1.3GHz					
;2MeV					
; 100mA					
;<50Mv/m					
;<1πmm mrad					
;<2 keV (<0.1 %)					
; 1.5 cell					

STEP1; Design of the shape of the cavity

Procedure of press of half-cells

In the middle of press

PUNCH

DIE

Wrinkle holder

Nb sheet

Half-cell <u>No wrinkles, cracks</u>

Coupling calculation of Input coupler

(Collaboration with KEK)

Purpose

•Cu plating for input coupler requires <u>high electric conductivity</u> to suppress RF resistance and <u>low thermal conductivity</u> to suppress heat transfer.

Thin(μ m) copper plating film on stainless steel plate and high RRR(nearly 50) are required.

Method

• To obtain high electric conductivity, MHI adopts electroplating in an acid sulfate bath performed in the periodic reverse (PR) process.

•3 samples(10µm/20µm/30µm Cu plating and 1µm Ni strike plating on t1mm stainless plate) are prepared and measured RRR of each samples.

Reference; H.Sakai, TTC2014@DESY

$\mathsf{RRR}_{\mathsf{Cu}} = \rho_{\mathsf{Cu}@300\mathsf{K}} / \rho_{\mathsf{Cu}@4\mathsf{K}} \qquad (\rho : \text{resistivity})$

- It is difficult to measure directly the resistivity of the Cu plating.
 - \rightarrow measured both Cu plated/unplated samples and calculated RRR
- Heat treatment has an influence on the resistivity.
 - \rightarrow measured both with/without heat-treated(800°C) samples.

No.	Cu plating Thickness	Heat Treatment
1	Stainless Steel 1mm + Cu plating 10µm	no HT
2	Stainless Steel 1mm + Cu plating 20µm	no HT
3	Stainless Steel 1mm + Cu plating 30µm	no HT
4	Stainless Steel 1mm (Cu 10µm removed)	no HT
5	Stainless Steel 1mm (Cu 20µm removed)	no HT
6	Stainless Steel 1mm (Cu 30µm removed)	no HT
7	Stainless Steel 1mm + Cu plating 10µm	after HT
8	Stainless Steel 1mm + Cu plating 20µm	after HT
9	Stainless Steel 1mm + Cu plating 30µm	after HT
10	Stainless Steel 1mm (Cu 10µm removed)	after HT
11	Stainless Steel 1mm (Cu 20µm removed)	after HT
12	Stainless Steel 1mm (Cu 30µm removed)	after HT

1. MHI's work for ERL (RRR measurement of Cu plating)

1. MHI's work for ERL (RRR measurement of Cu plating)

⇒ Heat treatment decreases Cu plating(on Stainless steel) RRR.

Phase	Cavity No.	Welding process for stiffener	Welding process for baseplate	Number of the cavity for final welding per 1 chamber	New process
R&D	MHI-A 9cell	LBW	EBW	1	
	MHI-B 2cell	-	-	1	Seamless dumbbell
	MHI-C 9cell	LBW	LBW	1	9seam / 1batch
	MHI-D 9cell	LBW	EBW	1 +3 dummy	Unification of monitor port and flange
STF 2-a	#23-26	LBW	EBW	2	Using retainer ring for monitor port
STF 2-b	#27-30	LBW	EBW	4	

© 2015 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

MITSUBISHI

Phase	Cavity No.	Welding process for stiffener	Welding process for baseplate	Number of the cavity for final welding per 1 chamber	New process	
R&D	MHI-A 9cell	LBW	EBW	1		
	MHI-B 2cell	-			Seamless dumbbell	
	MHI-C 9cell	LBW	y			9seam / 1batch
	MHI-D 9cell	LBW		Unification of monitor port and flange		
STF 2-a	#23-26	LBW			Using retainer ring for monitor port	
STF 2-b	#27-30	LBW	EBW	4		

Phase	Cavity No.	Welding process for stiffener	Welding process for baseplate	Number of the cavity for final welding per 1 chamber	New process
R&D	MHI-A 9cell	LBW	EBW	1	
	MHI-B 2cell	-			Seamless dumbbell
	MHI-C 9cell	LBW			9seam / 1batch
	MHI-D 9cell	LBW		У	Unification of monitor port and flange
STF 2-a	#23-26	LBW			Using retainer ring for monitor port
STF 2-b	#27-30	LBW	EBW	4	

Phase	Cavity No.	Welding process for stiffener	Welding process for baseplate	Number of the cavity for final welding per 1 chamber	New process
R&D	MHI-A 9cell	LBW	EBW	1	
	MHI-B 2cell	-			Seamless dumbbell
	MHI-C 9cell	LBW			9seam / 1batch
	MHI-D 9cell	LBW		У	Unification of monitor port and flange
STF 2-a	#23-26	LBW			Using retainer ring for monitor port
STF 2-b	#27-30	LBW	EBW	4	

Number of the Welding Welding Cavity cavity for final process for process for Phase New process No. welding per 1 stiffener baseplate chamber MHI-A LBW **EBW** 1 9cell MHI-B **Seamless** dumbbell 2cell R&D MHI-C 9seam / 1batch 9cell **Unification of** MHI-D monitor port 9cell V and flange Using retainer STF #23-26 ring for monitor 2-a port

© 2015 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

#27-30

STF

2-b

Laser can be swiched by beam switch to multi station through fiber

Reducing the number of parts ~Seamless dumbbell~

①Deep drawing from sheet

2 Set of pipe

③Spinning

6 Turning for stiffener

5 Turning for thinning of equator

Reducing the number of parts ~Seamless dumbbell~

6 Turning for stiffener

© 2015 MITSUBISHI HEAVY INDUSTRIES, LTD. All Rights Reserved.

<u>(5)</u>Turning for thinning of equator

Reducing the number of parts ~Seamless dumbbell~

Reducing the number of parts ~Seamless dumbbell~

Reducing the number of parts ~Seamless dumbbell~

Reducing the number of parts ~Unification of parts~

Batch Process

①4 sets of 9-cell cavity parts

⁽²⁾Before welding

1.3GHz 9-cell superconducting cavity for STF MHI-#27~#30 AITSUBISHI

O MHI has fabricated the main components for KEK cERL. Injector module Main acceralator module

O MHI has improved mass-productin method.

- Laser beam welding Seamless dumbbell Changing the material of HOM coupler Batch process

O MHI is also developing now.

SRF Electron gun (Currently in progress) Coupler (Currently in progress)

Thank you for your attention !

Our Technologies, Your Tomorrow