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Outline

1. Motivation for studying structural materials
a. New lightweight materials
b. New fatigue failure diagnostics and understanding
Characteristics of “ideal” x-ray source for characterizing structural materials
Basics of an Inverse Compton Scattering (ICS) hard x-ray source
Current capabilities of 3" generation and XFEL sources
MIT concept utilizing an optical cavity
Combination of MIT cavity with existing Cornell ERL components
a. Table of design parameters and performance
b. Calculated spectral curves
c. Floor plan/layout of source
7. Additional scientific applications
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1. Lighter weight structural materials enhance fuel efficiency in airplanes, trucks,
and cars.

2. Improved diagnostics and/or understanding of fatigue failure will reduce need
to replace expensive parts well before expected lifetime in critical
applications.

3. Improved engineering design tools.

Modern Engineering Design begins with (e.g., using finite element methods)
each component (e.g., a nut or a bolt) and then couples them together to build a
model of a system (e.g., an airplane). At the lowest level, materials are assumed
to be homogeneous and are modeled using Macroscopic elasticity theory and
experimentally obtained stress/strain curves, measured yield stress, etc.

Goal is to incorporate the microstructure of structural materials into the design
process.
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Modern Engineering Design
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Microstructure-Based Modeling

(Owen Richmond - US Steel, Alcoa)
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Microstructure-Based Modeling

(Owen Richmond - US Steel, Alcoa)
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Function, Constraint, Objectives
Constraints & Objectives based on
properties

— Strength, Stiffness, Density, Cost
Mechanical Tests: stress-strain data |
— Extract Properties

— Validate and Calibrate Material Models

— Drag the model through “Gauntlet” of ™=
data

Implement models within design
methodologies - FEM

— Understand heterogeneous deformation
Microstructural Characterization

— Microstructure dictates properties

— Ever more highly resolved “images” (3D)

Cornell University
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HEXD

HEXD and FEM Modeling

Experiment Geometry
Transmission Y sole figure S area detector
Near and Far Field Detectors <_|:T surface
— Grain Maps z P
Evolving intensity distributions ——p - e
« Spots — individual grains ety

* Rings — distribution of grains
In situ loading and residual strains e >|

Crystal scale elastoplastic deformation
Assemble polycrystal

Mimic loading of HEXD sample
Deformation of individual grains
Comparison to data: virtual diffractometer

Neper generated finite element wesh
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Experimental Challenge

What experimenters want:

50-100 keV x-rays for penetration through several mm of metal
Sub 1 pum spot (needs to be smaller than typical grain size)
Good angular collimation (6k, /k < 1073)

Narrow bandwidth (6E/E < 1073)

High intensity > 1014 / second on sample (time resolution)

X-ray beam rastering
Software

NGO WD

ph/sec
(mm-mrad)2-0.1%bw

B > 10%° at hw = 100 keV

Eo® Cornell University
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High-speed, high-spatial resolution, high-energy x-ray, area detectors
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Inverse Compton Scattering

W. S. Graves, W. Brown, F. X. Kaertner, and D. E. Moncton, "MIT inverse
Compton source concept,” Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 608 (1, Supplement 1), S103-S105 (2009).

As the electron oscillates in its rest frame, it radiates (Thompson Scattering)
at the same wavelength as the (doppler shifted) incident radiation. Back in

the laboratory frame however this radiated electromagnetic has received
another doppler shift:

Angle of emission ~ 7y
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MIT Design

Yb:YAG Oscillator
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Combine an Enhancement Cavity with an ERL

Higher energy beam from FFAG/ERL (to reduce angular divergence) + high
average electron beam current (rep rate), plus enhancement cavity to
increase flux -> high flux, high energy, time-resolved hard x-rays

$55R) Cornell University
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Combine an Enhancement Cavity with an ERL

Higher energy beam from FFAG/ERL (to reduce angular divergence) + high
average electron beam current (rep rate), plus enhancement cavity to
increase flux -> high flux, high energy, time-resolved hard x-rays
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\
Comparison to MIT Design -
P g
Parameter MIT ERL
Tunable photon energy (keV)
# of x-rays generated per pulse Pulse length (ps) 01 052
Flux per shot (photons) 3.00E+06 6.00E+06
NeNyO-T Repetition rate (Hz) 1.00E+08 1.00E+08
x = Zn(xLZ n xez) FF Average qux(p.hotons/s) 3.00E+14 6.00E+14
On-axis bandwidth (%) 1 1.3
RMS Divergence (mrad) 1 1.8
Source RMS size (mm) 0.002 0.02
Peak Brilliance (ph/s/mm?*/mrad?/0.1%BW) 6.00E+19 2.62E+21
Average Brilliance (ph/s/mm?%/mrad?/0.1%BW) 2.00E+15 5.23E+17
E (MeV) 25 286
. . 1% 48.9 559.7
Tlme-average spectral brlghtness photon energy (eV) 1.19E+04 1.55E+05
optical divergence (mrad) 20.4 1.8
. € (Um) 0.1 0.15
Bayg = 1.5% 1073 (Z’Z)’:Z% rep | [xe(um) 2 10
X' (mrad) 1.02 0.03
At, (ps) 2
X, (um) 2 10
At (ps) 0.3 5
A (pm) 1 10
Q. (pC) 10 100
W, (mJ) 10 5
P - 21
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Simulated Performance* - 76 MeV

4x10%

3x10'% E =76 MeV, 100 pC
1 um laser wavelength
50 mJ per pulse

100 MHz enhancement cavity

2x10'8 -

1x10'® -

Peak Brightness(Photons/mm"2/mrad*2/s/0.1%BW)

09 1o 1 Tz m Produces a flux of over
oy ety (ke 1x1013 photons/s

©y (mrad)

@y (mrad) Time (ps)

*Three-dimensional time and frequency —domain theory of femto-
second x-ray pulse generation through Thomson scattering”, W.J.
Brown and F.V. Hartemann, Phys. Rev. STAB 7, 060703, (2004) 22
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Simulated Performance - 286 MeV
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E =286 MeV, 40 pC
1 um laser wavelength
50 mJ per pulse

100 MHz enhancement cavity

Produces a flux of over
1x10%3 photons/s

With a 1 um laser, produces

1550 keV photons, so in
reality we would use a 10
um laser to get 150 keV
photons.
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Brightness Plot with ICS Source

Spectral Brightness [ph/sec/mm”2/mrad*2/0.1%bw]
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What else could you do with this?

1. Structural Materials: (e.g., Matt Miller — Cornell)
a. If can focus to 0.1 um spot, then can raster hard x-ray beam.
b. Rastering eliminates grain size challenge — all materials (especially real
ones) are now open for study.
2. Time-resolved Diffraction Studies: (e.g. Aaron Lindenberg - Stanford)
a. Picosecond x-ray pulses (high energy, high flux) are not available
anywhere else — including XFELSs.
3. Time-resolved or Spatially Resolved Pair Distribution Function Studies:
(e.g., Simon Billinge — Columbia)
a. High energy (150 keV) x-rays
b. Small Spots
c. Short pulses
4. With shorter laser wavelength (or higher beam energy), we can generate
gamma ray beams for nuclear physics, astrophysics and nuclear material
studies.
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