

Cornell's ERL Main Linac Cryomodule: Design, Construction and Results

ERL2015

Ralf Eichhorn Cornell University

on behalf of

Paul Bishop, Benjamin Bullock, Brian Clasby, Holly Conklin, Joe Conway, Brendan Elmore, Fumio Furuta, Andriy Ganshyn, Mingqi Ge, Terri Gruber, Yun He, Vivian Ho, Georg Hoffstaetter, Roger Kaplan, John Kaufman, Gregory Kulina, Matthias Liepe, Tim O' Connell, Hassan Padamsee, Peter Quigley, John Reilly, Dave, Rice, James Sears, Valery Shemelin, John Sikora, Eric Smith, Karl Smolenski, Maury Tigner, Vadim Veshcherevich

5 GeV, 100 mA, 8 pm emittances, 2 ps bunch length, 16 M/m cw , Q > $2*10^{10}$, 200 W HOM power per cavity,

PDDR: https://www.classe.cornell.edu/Research/ERL/PDDR.html

Linac cryomodule for the ERL (MLC)

• five regular HOMs/two taper HOMs

Cornell ERL Cavity

- 7 cell cavity
- 1.3 GHz
- optimized for high BBU limit
- no HOM antenna
- fully built in house

Stringent Length & Frequency Tolerance: L=1160 mm +/- 0.5 mm

1st Series Production: Un-Stiffened Cavities

- > Initial series production after single HTC prototype
- > After welding, *cavities were too long*
- Cavities were also too low in frequency (requires stretching of cavity to tune to correct frequency), compounding length issues
- After tuning, cavities were over the length tolerance by a large amount

	Target Frequency (MHz)	Frequency as Built (MHz)	Target Length (mm)	Length as Built (mm)	Length Post- Tune (mm)
ERL7- 002	1298.985	1298.460	1160	1161.04	1165.95
ERL7- 003	1298.985	1298.460	1160	1161.54	1163.56
ERL7- 004	1298.985	1298.498	1160	1160.66	1162.09

Frequency & Length of ERL Cavities After Welding

Root Cause of Production Cavity Frequency and Length Discrepancy

- > There were several reasons the 1st series cavities did not meet production standards:
 - Insufficient tracking of salient production variables
 - > Lack of a protocol for length and frequency control of cavities during production
 - > We assumed that by cutting the dumbbells to the target frequency, they would be the right length

Inaccurate RF Measurement Fixture for Dumbbells!

- > The measurement fixture deformed the dumbbells during measurements
- > Root cause for dumbbells being the wrong frequency (~500 kHz offset)
- > When combined with the erroneous trimming protocol, this leads to an unfixable length error
- > RF Measurement Fixture redesigned

Improved RF Fixture

2nd batch cavity accuracy

- Six Dumbbell were selected to form the cavity ERL7-005
- After measuring the dumbbells, it was discovered that if trimmed to the "ideal" frequency, they would all be much too short!
- So, the protocol was employed:
 - > The dumbbells were trimmed slightly too long (lower frequency)
 - The entire cavity would be tuned to the correct frequency (by stretching) resulting in the correct length and frequency!

> Result:

- > ERL7-005 was *too short and too low in frequency*, as built.
- The amount of etching was adjusted to compensate for the discrepancy in frequency.
- After some investigation, it was determined that the estimated weld shrinkage for each equator was to small.
- After adjusting this value, the following cavities came out much better.

2nd Series Production

- Using the above experience, the next three cavities were produced.
- > All three met the frequency and length requirements set forth.
- > All six cavities have been tested with a 100% yield.

	Target Frequency (MHz)	Frequency as Built (MHz)	Target Length (mm)	Length as Built (mm)	Length Post- Tune (mm)	ΔLength
ERL7 -005	1298.600	1298.259	1157.9	1157.1	1158.4	-0.6
	ERL7-005					

	Target Frequency (MHz)	Frequency as Built (MHz)	Target Length (mm)	Length as Built (mm)	Length Post- Tune (mm)	ΔLength
ERL7 -006	1298.85	1298.486	1157.84	1157.85	1159.09	0.09
ERL7 -007	1298.75	1298.386	1157.39	1157.99	1159.3	0.3
ERL7 - 002a	1299	1298.578	1161.66	1161.36	1160.08	0.08

2nd Series Production Cavities

Vertical Cavity Test Results

Horizontal Cavity Test Results

Cool-Down Effects: Thermocurrents

	10 K	20 K	50 K	80 K	100 K
Nb	0.31	0.98	2.73	3.09	3.13
Ti	N/D	N/D	-3.00	-3.00	-2.60

$$U_{th} = \prod_{T_1}^{T_2} (S_{Nb}(T) \square S_{Ti}(T)) dT$$

Seebeck Voltages can be some 10 $\mu\text{V}\textsc{,}$ currents can reach 10 A

- Is it real?
- Magnetometer data from a horizontal test, with probe placed next to the cavity

Cool-Down Effects: Thermocurrents

- Does it hurt?
- In a symmetric situation: no

Cool-Down Effects: Thermocurrents

Ralf Eichhorn | CLASSE | Cornell University

- Horizontal cool-down breaks symmetry
- Longitudinal gradients produce thermo-currents
- Transversal gradients define the asymmetry and the amount of thermocurrent induced magnetic field hitting the RF surface
- => single gradients are acceptable, combinations degrade cavity performance
- But: Temperature gradients may be necessary to expel residual magnetic field

Main Linac Input Coupler Testing

Cornell HOM Beamline Absorbers

Absorbing Material: Doped SiC

Cooling Passage Configuration of 80K Cooling Jacket

HOM Absorbers

HOM Absorbers Beam Test

- No charge-up of the HOM ceramics observed
- HOM heating was less than expected

Cryogenic sketch of one Module

Support Structure/ Alignment

Support Structure/ Alignment

- Dec '12 Design completed
- Jan '12 Order 6 remaining input couplers (6 month fab)
- Feb '12 3 unstiffened cavity built, testing started
- Apr '13 Award vacuum vessel PO (6 month fab) & HGRP (6 month)
- July '13 Production of 3 stiffened cavities started
- Sept. '13 In-house fabrication of string components complete (tuners, HOMs, tapers...)
- Jan. '14 Begin string assembly in clean room
- May '14 Begin cold mass assembly and instrumentation (outside clean room)
- End of '14 MLC ready for testing

MLC string assembly

Feb. 2014

MLC string assembly (2nd half)

MLC magnetic/ thermal shield

Apr. 2014

HGRP line

May 2014

Ralf Eichhorn | CLASSE | Cornell University

String HGRP mating

Vacuum Vessel

2K 2Phase line welding

Cryo-Manifold Installation

Cold mass assembly

Finishing the MLC

Moving MLC to Wilson Lab

Cool-Down and Testing at Wilson Lab

June 2015

Cool-Down and Testing at Wilson Lab

Summary:

- Finished a 40,000 h effort on designing, prototyping and building a next generation high Q cw cryomodule (in time and budget)
- Resolved many interesting scientific questions in SRF and cryogenics

Outlook:

- To be pessimistic: cool-down starts in July
- Q data taking will start August (2 weeks per cavity)
- Ramp up to all cavity operation early 2016
- Use this module inside an accelerator

And

Thanks!

Ralf Eichhorn | CLASSE | Cornell University

ERL2015

miversit