Using ERLs for Coherent electron Cooling

Igor Pinayev, Collider-Accelerator Department, BNL

Motivation

- Traditional stochastic cooling does not have sufficient bandwidth to cool intense proton beams (~3×10¹¹ p/nsec) and can not provide two orders of density increase for heavy ion beams
- Efficiency of traditional electron cooling falls as as high power of hadron's energy
- Synchrotron radiation is rather fable due to the heavy masses. For the same reason optical stochastic cooling is not suitable

Species	Energy, GeV/u	Stochastic cooling, hrs	Electron Cooling, hrs	CeC, hrs 1D/3D
Au	130	1	1	0.015/0.3
р	325	100	> 30	0.3/1

Coherent Electron Cooling (CeC)

3D FEL response calculated Genesis 1.3, confirmed by RON

Main FEL parameters for eRHIC with 250 GeV protons

Energy, MeV	136.2		266.45
Peak current, A	100	□ _o , nm	700
Bunchlength, psec	50	□ _w , cm	5
Emittance, norm	5 mm mrad	a _w	0.994
Energy spread	0.03%	Wiggler	Helical

The amplitude (**blue line**) and the phase (**red line**, in the units of π) of the FEL gain envelope after 7.5 gain-lengths (300 period). Total slippage in the FEL is 300λ , λ =0.5 µm. A clip shows the central part of the full gain function for the range of ζ ={50 λ , 60 λ }.

eRHIC CeC Layout

~ 100 m

- Hadron beam line:
 - 2 dipoles, 2.5" gap, 1.6 T, 8 m each
 - 12 quadrupoles, 2.5", 20 T/m, 2.5 m each
 - 20 dipole trims: 10A, 20 V
- Electron beam line
 - 6 dipoles, 2.5" gap, 0.3 T, 0.4 m each
 - 16 quadrupoles, 2.5", 7 T/m, 0.3 m each
 - FEL: period 4 cm, length 12 m
 - 30 dipole trims: 1A, 10 V

FEL Length 12 meters Kicker – 20 m Modulator – 20 m FEL wavelength 0.56-14 μ (50-250GeV) Delay in FEL 0.185-1.1 mm

Possible ERL Configuration

ERL Beam Parameters

Parameter	Value	
Electron beam energy	25-140 MeV	
Electron beam current	50 mA	
Bunch charge	5 nC	
Repetition rate	9.38 MHz	
Bunch length	0.2 nsec	
Normalized emittance	< 3 mm mrad	
Relative energy spread	<10-4	

CeC PoP experiment

Main parameters for the CeC experiment with ¹⁹⁷Au⁷⁹ ions

Parameter	Units	
Ion's energy	GeV/u	40
RMS norm. emittance, x,y	mm mrad	2
Ion per bunch		1x10 ⁹
Longitudinal emittance	eV sec	0.5
RMS bunch-length	nsec	1.5
RMS momentum spread		3.5x10 ⁻⁴
□*	m	5.5
Rep-rate	kHz	78.3
Electron beam energy	MeV	21.8
Charge per bunch	nC	0.5-2
RMS normalized emittance	mm mrad	5
Peak current in FEL	Α	60-100
RMS energy spread		1×10^{-3}
Electrons per bunch	x10 ⁹	3.1-12.4
Electrons beam current	μA	160
e-beam power	kW	3.5
Length of the CeC	m	14
Length of FEL wiggler	m	3x2.5
Type of wiggler		Helical
Wiggler period	cm	5
Wiggler parameter, a _w		0.5
FEL wavelength		13

Layout of CeC experiment in IP2

Injector Section

SRF gun – 113 MHz, 2 MV design Two 500 MHz bunching cavities Drift space with diagnostics: ICT, BPMs, profile monitors, BPMs, slits for emittance measurement, Faraday cup

Photocathode

 $\frac{5_{12}}{5_{12}} \frac{5_{12}}{5_{12}} \frac{5_{12}}$

Accelerator Cavity

- 704 MHz frequency
- 20 MV accelerating voltage
- Ready to be shipped next week

Helical Wigglers

All three wiggler were delivered to BNL. We are waiting for magnetic measurement equipment to be shipped and perform measurements on site prior installation.

Summary

- Coherent electron cooling is of critical importance for the eRHIC
- High requirements on the beam quality and high electron beam power dictate usage of energy recovery linac
- Base parameters of the electron beam design are defined but the final design depends on the findings of the proof-of-principle experiment, which is progressing at RHIC