


Existing(ed) ERL-FELs
� Jefferson Lab, USA
�ALICE, UK
�BINP, Russia
� JAERI, Japan
Move further – X-Ray ERL FELs!
� ARC compression
� Zigzag with CSR compensation
Better temporal coherence -- New Ideas?
� XFELO
� OFFELO
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Advantages of ERL light sources
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In FELs only small portion of electron beam power is converted to laser power –
efficiency ~ ρ ~ 1e-2 – 1e-4. Linac based FELs dump the majority of the beam 
power while ERLs recover the beam energy. Thus makes high repetition rate 
possible.
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In storage rings, the beam qualities are determined by equilibrium conditions 
(dampings, excitations, scatterings…). While in ERL & Linac, fresh electron 
bunches are used every turn, thus qualities are largely determines by source. 
This makes short bunches with high peak current and low emittance, energy 
spread possible.

Beam quality



Advantages of ERL light sources

6/10/15 Yichao Jing, ERL 2015 15

In FELs only small portion of electron beam power is converted to laser power –
efficiency ~ ρ ~ 1e-2 – 1e-4. Linac based FELs dump the majority of the beam 
power while ERLs recover the beam energy. Thus makes high repetition rate 
possible.

Energy efficiency ERL, SR > LINAC

In storage rings, the beam qualities are determined by equilibrium conditions 
(dampings, excitations, scatterings…). While in ERL & Linac, fresh electron 
bunches are used every turn, thus qualities are largely determines by source. 
This makes short bunches with high peak current and low emittance, energy 
spread possible.

Beam quality ERL, LINAC > SR



Advantages of ERL light sources

6/10/15 Yichao Jing, ERL 2015 16

In FELs only small portion of electron beam power is converted to laser power –
efficiency ~ ρ ~ 1e-2 – 1e-4. Linac based FELs dump the majority of the beam 
power while ERLs recover the beam energy. Thus makes high repetition rate 
possible.

Energy efficiency ERL, SR > LINAC

ERL is a perfect candidate to provide continuous, high brightness beams.    

In storage rings, the beam qualities are determined by equilibrium conditions 
(dampings, excitations, scatterings…). While in ERL & Linac, fresh electron 
bunches are used every turn, thus qualities are largely determines by source. 
This makes short bunches with high peak current and low emittance, energy 
spread possible.
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X-ray science evolves towards the new regime: science with coherent X-ray and 
ultrafast X-rays 
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X-ray science evolves towards the new regime: science with coherent X-ray and 
ultrafast X-rays 

https://www6.slac.stanford.edu/news/2015-02-11-scientists-take-first-x-ray-portraits-living-bacteria-lcls.aspx
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X-ray science evolves towards the new regime: science with coherent X-ray and 
ultrafast X-rays 

https://www6.slac.stanford.edu/news/2015-02-11-scientists-take-first-x-ray-portraits-living-bacteria-lcls.aspx

G. Vander Schot, et al., Nature Communication, 11 Feb 2015

Higher energy, higher peak current => stronger compression => stronger CSR!



Compression in recirculation ARCs
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Bunch compression done in ARCs where 
bends have gradually reduced strengths. 
So that while the bunch length gets 
shorter, it experiences weaker bends => 
less CSR effects!

D.R. Douglas, et al., TUPMA034, IPAC15

With sophisticated optics tuning (usually 
with usage of higher order-poles), smaller 
emittance growth can be achieved.

S.Di Mitri, EPL 109, 62002 (2015) and this workshop



Alternative way – “cancel” the CSR!
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To the lowest order, the 
smearing in the transverse 
phase space is result of the 
coordinate and the angular 
displacement depending on 
longitudinal position of the 
particle.
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To the lowest order, the 
smearing in the transverse 
phase space is result of the 
coordinate and the angular 
displacement depending on 
longitudinal position of the 
particle.

How to remove this? – negative dispersion!



Zigzag chicane – strengths balancing
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tail

Beam energy change diagram along the beam line:

1st chicane

2nd chicane

En
er

gy
 [a

rb
. u

ni
t]

center

Change in energy in second 
chicane is stronger due to 
stronger wakes – shorter bunch 
length, thus the bending 
strength should be smaller. 

Phase advance between 
two chicanes can be 
tuned to realign different 
longitudinal slices –
reduce the overall 
projected emittance.



Case study – using eRHIC beam for FEL
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Soft X-Ray Hard X-Ray

Energy, GeV 1.8 10

Bunch charge 
(nC) 0.1 0.1

RMS bunch 
length (ps) 1 1

RMS energy 
spread (keV) 50-200 500

RMS εn (μm) 0.6 0.2

Undulator
period (cm) 1.85 3

Λ0 (nm) 1 0.1

Detector II

Detector I

Energy Recovery Linac,
1.32 GeVCoherent 

Electron Cooler
Polarized 

Electron Source

electrons

hadrons

From AGS

Beam Dump

100 meters

FFAG Recirculating Electron Rings ERL Cryomodules

1.3-5.3 GeV

6.6-21.2 GeV
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6/10/15 Yichao Jing, ERL 2015 35

After optimizing all parameters (chicane strengths, optics and phase 
advance), we largely suppress the CSR induced emittance growth:

MOPMN028, IPAC15
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After optimizing all parameters (chicane strengths, optics and phase 
advance), we largely suppress the CSR induced emittance growth:

Peak current (~ 1200 Amps) results in a 30 fold compression 
with CSR suppression scheme. A similar compression scheme 
has been applied to ATF2 upgrade to generate a 140+ fold 
compression with ~ 20% emittance growth.

MOPMN028, IPAC15



Beam distribution before FEL
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εf (μm) 0.678 0.253

Final beam parameters:Final longitudinal phase space 
distribution
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FEL growth and spectrum
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Fitted 3D gain length : 2 m.

Reaches saturation in 100 m.
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X-Ray FEL oscillator
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Y. Shvyd’ko et al., Nature Photonics 5, 539–542 (2011)
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Conclusion
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� ERL FELs have been successfully operating/operated around the world and 
are routinely providing high quality electron beams for users.

� Expanding the working regime of ERL FELs to X-Rays (soft and hard) is very 
beneficial and there are various ongoing proposals for such effort.

� The strong CSR effect residing in the strong bunch compressor for a X-ray ERL 
FEL could be alleviated/solved by using advanced compressing schemes. 
Such schemes have been applied to multiple cases and have proved to be 
successful. 

� To further improve the bandwidth of such a high-gain X-Ray ERL FEL would 
require some new techniques/novel ideas. Various approaches have been 
tested/studied for this purpose.
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Backup slides
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Beam parameters for eRHIC FEL

Choose low energy (~ 10 GeV) for FEL to avoid severe blow up 
in both emittance and energy spread caused by synchrotron 
radiation. Normalized emittance is largely depend on the 
injector.
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Coherent Synchrotron radiation and its 
effect on beam quality

Coherent synchrotron radiation takes place in a circular orbit when the radiation 
from the tail of a bunch can be seen by the head, i.e. the bunch length σs is smaller 
then the slippage of radiation during the circular orbit                    head gains energy 
while tail loses energy. 
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Peak current for FEL

Full rotation would certainly increase the peak current. However, it would 
also induce a larger correlated energy spread which is hard to 
compensate downstream. Not to mention the magnified CSR effect. Thus 
a relative low (~1 kA) beam current is preferable for our implementation.
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Energy spread for FEL

By tuning the injector, we should have the ability of tuning the e- beam’s 
energy spread at FEL. Larger energy spread lowers the final lasing power 
as well as lengthens FEL gain length thru FEL parameter ρFEL.
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CSR shielding with parallel plates

Proximity of parallel metal plates can shield the CSR under condition
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V. Yakimenko, M. Fedurin, V. Litvinenko, A. Fedotov, D. Kayran, and P. Muggli
Phys. Rev. Lett. 109, 164802(2012)

By closing the gap, both the CSR induced 
energy loss and energy spread are reduced.
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