

Commissioning and First RF Results of the 2nd 3.5 Cell SRF Gun for ELBE

André Arnold for the SRF gun crew

Workshop on Energy Recovery Linacs

June 7-12, 2015, Brookhaven

Design of SRF gun II
Cavity and cryomodule assembly
Commissioning
Cavity contamination
Summary

CAVITY

- In operation from Sept. 2007 until April 2014
- Gradient limited by FE

PHOTOCATHODES

- Long lifetime in SRF gun (>1 yr, total charge 264 C @ QE \approx 0.6 %)
- No cavity degradation during first 4 years
- Multipacting at the cathode stalk, suppression with DC Bias
- High dark current with similar properties as the photo beam

OPERATION @ ELBE

• Despite of low gradient successful experiments and measurements: Far-IR FEL operation, Compton-backscattering with TW laser, Superradiant THz radiation, Slice emittance, Longitudinal phase space measurements

FUTURE

• Refurbish ELBE SRF gun I to have a spare part

- Cs₂Te, Cu, GaAs, Mg cathode
- Cooled by LN2 to 77 K
- Therm. and electr. isolated from cavity
- Up to 7 kV DC bias for MP suppression
- Moveable and tiltable by remote stepper

- SC solenoid by Niowave Inc. (2 K)
- Remote controlled xy-table (77 K)
- Field mapping at room temperature
- On axis field profile $\Rightarrow B_{z,max} = 449 \text{ mT} @ 10 \text{ A}$

- Additional half-cell stiffening (light green) to reduce Lorentz force detuning, microphonics and pressure sensitivity
- Larger cathode boring to avoid contact with cathode tip
- Modified pickup for better cleaning and clean room assembly

- SC solenoid by Niowave Inc. (2 K)
- Remote controlled xy-table (77 K)
- Field mapping at room temperature
- On axis field profile $\Rightarrow B_{z,max} = 449 \text{ mT} @ 10 \text{ A}$

- SC solenoid by Niowave Inc. (2 K)
- Remote controlled xy-table (77 K)
- Field mapping at room temperature
- On axis field profile $\Rightarrow B_{z,max} = 449 \text{ mT} @ 10 \text{ A}$

- Additional half-cell stiffening (light green) to reduce Lorentz force detuning, microphonics and pressure sensitivity
- Larger cathode boring to avoid contact with cathode tip
- Modified pickup for better cleaning and clean room assembly

- Fabrication and vertical test of two new cavity in in collaboration with JLab (**P. Kneisel and co-workers**)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

- Fabrication and vertical test of two new cavity in in collaboration with JLab (**P. Kneisel and co-workers**)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

- Fabrication and vertical test of two new cavity in in collaboration with JLab (**P. Kneisel and co-workers**)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

- Fabrication and vertical test of two new cavity in in collaboration with JLab (**P. Kneisel and co-workers**)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

- Fabrication and vertical test of two new cavity in in collaboration with JLab (P. Kneisel and co-workers)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

MZL

- Fabrication and vertical test of two new cavity in in collaboration with JLab (P. Kneisel and co-workers)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

- Fabrication and vertical test of two new cavity in in collaboration with JLab (P. Kneisel and co-workers)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

HZD

- Fabrication and vertical test of two new cavity in in collaboration with JLab (P. Kneisel and co-workers)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

- Fabrication and vertical test of two new cavity in in collaboration with JLab (P. Kneisel and co-workers)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

- Fabrication and vertical test of two new cavity in in collaboration with JLab (P. Kneisel and co-workers)
- A RRR300 fine grain and a large grain cavity
- Main objective: achieve design value of E_{pk}=50 MV/m

cathode cooler with Cu cathode

cathode cooler with Cu cathode

Procession of SRF gun II into the bunker

Mitglied der Helmholtz-Gemeinschaft

Procession of SRF gun II into the bunker

Field profile and external Q's

field profile

 TM_{010} frequencies in combination with ٠ latest bead pull results used to estimate the field profile of the accelerating mode

Table 2: Frequency and bandwidth of all TM₀₁₀ modes.

π-mode	1/4	2/4	3/4	4/4
f_0 / MHz	1267.667	1282.794	1294.762	1300
<i>b</i> /Hz	17	147	271	140

Field profile and external Q's

field profile

 TM_{010} frequencies in combination with ٠ latest bead pull results used to estimate the field profile of the accelerating mode

Table 2: Frequency and bandwidth of all TM₀₁₀ modes.

π-mode	1/4	2/4	3/4	4/4
f_0 / MHz	1267.667	1282.794	1294.762	1300
<i>b</i> /Hz	17	147	271	140

Field profile and external Q's

field profile

• TM₀₁₀ frequencies in combination with latest bead pull results used to estimate the field profile of the accelerating mode

Table 2: Frequency and bandwidth	h of all TM ₀₁₀ modes.
----------------------------------	-----------------------------------

π-mode	1/4	2/4	3/4	4/4
f_0 / MHz	1267.667	1282.794	1294.762	1300
<i>b</i> /Hz	17	147	271	140

<u>external Qs</u>

- 16 kW CW main coupler with fixed coupling by bandwidth measurement
- HOM coupler and choke pickup by comparing transmitted power with known pickup antenna from vertical test
- All criteria for coupling fulfilled

field profile

• TM₀₁₀ frequencies in combination with latest bead pull results used to estimate the field profile of the accelerating mode

Table 2: Frequency and bandwidth of all TM ₀₁₀ modes	3.
---	----

π-mode	1/4	2/4	3/4	4/4
<i>f</i> ₀ / MHz	1267.667	1282.794	1294.762	1300
<i>b</i> /Hz	17	147	271	140

- 16 kW CW main coupler with fixed coupling by bandwidth measurement
- HOM coupler and choke pickup by comparing transmitted power with known pickup antenna from vertical test
- All criteria for coupling fulfilled

	meas.	spec.
FPC:	9.3x10 ⁰⁶	1.3×10^{07}
F-Pickup:	2.7x10 ¹¹	~2x10 ¹¹
Choke:	4.3×10^{10}	~2x10 ¹¹
HOM1:	2.3x10 ¹²	>2x10 ¹¹
HOM2:	5.8x10 ¹¹	>2x10 ¹¹

field profile

• TM₀₁₀ frequencies in combination with latest bead pull results used to estimate the field profile of the accelerating mode

Table 2: Frequency and bandwidth of all TM_{010} n	nodes.
--	--------

π-mode	1/4	2/4	3/4	4/4
<i>f</i> ₀ / MHz	1267.667	1282.794	1294.762	1300
<i>b</i> /Hz	17	147	271	140

external Qs

- 16 kW CW main coupler with fixed coupling by bandwidth measurement
- HOM coupler and choke pickup by comparing transmitted power with known pickup antenna from vertical test
- All criteria for coupling fulfilled

	meas.	spec.
FPC:	9.3x10 ⁰⁶	1.3×10^{07}
F-Pickup:	2.7×10^{11}	~2x10 ¹¹
Choke:	4.3x10 ¹⁰	~2x10 ¹¹
HOM1:	2.3x10 ¹²	>2x10 ¹¹
HOM2:	5.8x10 ¹¹	>2x10 ¹¹

field profile

• TM₀₁₀ frequencies in combination with latest bead pull results used to estimate the field profile of the accelerating mode

Table 2: Frequency and bandwidth of	f all TM ₀₁₀ modes.
-------------------------------------	--------------------------------

π-mode	1/4	2/4	3/4	4/4
f_0 / MHz	1267.667	1282.794	1294.762	1300
<i>b</i> /Hz	17	147	271	140

external Qs

- 16 kW CW main coupler with fixed coupling by bandwidth measurement
- HOM coupler and choke pickup by comparing transmitted power with known pickup antenna from vertical test
- All criteria for coupling fulfilled

	meas.	spec.
FPC:	9.3x10 ⁰⁶	1.3×10^{07}
F-Pickup:	2.7×10^{11}	~2x10 ¹¹
Choke:	4.3x10 ¹⁰	~2x10 ¹¹
HOM1:	2.3x10 ¹²	>2x10 ¹¹
HOM2:	5.8x10 ¹¹	>2x10 ¹¹

field profile

• TM₀₁₀ frequencies in combination with latest bead pull results used to estimate the field profile of the accelerating mode

Table 2: Frequency and bandwidth of	f all TM ₀₁₀ modes.
-------------------------------------	--------------------------------

π-mode	1/4	2/4	3/4	4/4
<i>f</i> ₀ / MHz	1267.667	1282.794	1294.762	1300
<i>b</i> /Hz	17	147	271	140

- 16 kW CW main coupler with fixed coupling by bandwidth measurement
- HOM coupler and choke pickup by comparing transmitted power with known pickup antenna from vertical test
- All criteria for coupling fulfilled

	meas.	spec.	_
FPC:	9.3x10 ⁰⁶	1.3×10^{07}	V
F-Pickup:	2.7x10 ¹¹	~2x10 ¹¹	\checkmark
Choke:	4.3×10^{10}	~2x10 ¹¹	\checkmark
HOM1:	2.3x10 ¹²	>2x10 ¹¹	
HOM2:	5.8x10 ¹¹	>2x10 ¹¹	

field profile

• TM₀₁₀ frequencies in combination with latest bead pull results used to estimate the field profile of the accelerating mode

Table 2: Frequency and bandwidth of all TM ₀₁₀ mode	es.
--	-----

π-mode	1/4	2/4	3/4	4/4
<i>f</i> ₀ / MHz	1267.667	1282.794	1294.762	1300
<i>b</i> /Hz	17	147	271	140

- 16 kW CW main coupler with fixed coupling by bandwidth measurement
- HOM coupler and choke pickup by comparing transmitted power with known pickup antenna from vertical test
- All criteria for coupling fulfilled

	meas.	spec.	
FPC:	9.3x10 ⁰⁶	1.3×10^{07}	V
F-Pickup:	2.7x10 ¹¹	$\sim 2x10^{11}$	~
Choke:	4.3×10^{10}	~2x10 ¹¹	~
HOM1:	2.3×10^{12}	>2x10 ¹¹	~
HOM2:	5.8x10 ¹¹	>2x10 ¹¹	

field profile

• TM₀₁₀ frequencies in combination with latest bead pull results used to estimate the field profile of the accelerating mode

Table 2: Frequency and bandwidth of	f all TM ₀₁₀ modes.
-------------------------------------	--------------------------------

π-mode	1/4	2/4	3/4	4/4
<i>f</i> ₀ / MHz	1267.667	1282.794	1294.762	1300
<i>b</i> /Hz	17	147	271	140

- 16 kW CW main coupler with fixed coupling by bandwidth measurement
- HOM coupler and choke pickup by comparing transmitted power with known pickup antenna from vertical test
- All criteria for coupling fulfilled

	meas.	spec.	
FPC:	9.3x10 ⁰⁶	1.3×10^{07}	V
F-Pickup:	2.7×10^{11}	~2x10 ¹¹	~
Choke:	4.3x10 ¹⁰	~2x10 ¹¹	~
HOM1:	2.3x10 ¹²	>2x10 ¹¹	~
HOM2:	5.8x10 ¹¹	>2x10 ¹¹	\checkmark

HZDR

number of full steps

Pressure sensitivity

- **Pressure sensitivity relatively high** but because of high stability of helium machine (<0.1 mbar) not critical for stable RF operation
- Nevertheless, filling cycle of LN2 shield cooling causes a frequency shift of about 200 Hz, which needs to be compensated by automatic cavity tuning

DRESDEN

Closed loop microphonics

HZDR

- Measurement of closed loop phase noise time signal
- Calculation and integration of PSD to separate main frequency components
- Calculation of total frequency detuning using BW, $K_{\rm p}$ and $\sigma_{\rm phase}$

Parameters

- loop gain: 127
- bandwidth: 300 Hz
- gradient: 9 MV/m

Closed loop microphonics

HZDR

- Measurement of closed loop phase noise time signal
- Calculation and integration of PSD to separate main frequency components
- Calculation of total frequency detuning using BW, $K_{\rm p}$ and $\sigma_{\rm phase}$

Parameters

- loop gain: 127
- bandwidth: 300 Hz
- gradient: 9 MV/m

Results

- $\sigma_{\text{phase}} = 0.02^{\circ} \text{ (RMS)}$
- $\sigma_{\text{frequency}} = 6.6 \text{ Hz (RMS)}$
- main contributors:
 10 Hz, 24 Hz (pumps)
 20 Hz, 80 Hz (unknown)
- \rightarrow Microphonics is no issue

Closed loop microphonics

- Measurement of closed loop phase noise time signal
- Calculation and integration of PSD to separate main frequency components
- Calculation of total frequency detuning using BW, K_p and σ_{phase}

- loop gain: 127
- bandwidth: 300 Hz
- gradient: 9 MV/m

Results

- $\sigma_{\text{phase}} = 0.02^{\circ} \text{ (RMS)}$ $\sigma_{\text{frequency}} = 6.6 \text{ Hz (RMS)}$
- main contributors: 10 Hz, 24 Hz (pumps) 20 Hz, 80 Hz (unknown)

 \rightarrow Microphonics is no issue

Formulas:

 $E_{acc} \stackrel{\beta \Box \ 1}{=} \frac{1}{L} \sqrt{2r_s Q_L 4P_i}$

 $Q_0 = \frac{Q_t P_t}{P_d}$

 $Q_0 \stackrel{\beta \square 1}{=} \frac{4P_i}{P_d} \frac{f_0}{BW}$

Formulas:

$$E_{acc} = \frac{1}{L} \sqrt{2r_s Q_t P_t}$$

 $E_{acc} \stackrel{\beta \Box \ 1}{=} \frac{1}{L} \sqrt{2r_s Q_L 4P_i}$

 $Q_0 = \frac{Q_t P_t}{P_d}$

 $Q_0 \stackrel{\beta \square 1}{=} \frac{4P_i}{P_d} \frac{f_0}{BW}$

- both quantities were determined independently by measuring P_i and P_d or P_t and P_d
- 30% performance loss compared to the last vertical test, but twice the gradient of SRF gun I
- no further degradation after Cu cathode transfer **but tremendous loss with Cs₂Te cathode**

- both quantities were determined independently by measuring P_i and P_d or P_t and P_d
- 30% performance loss compared to the last vertical test, but twice the gradient of SRF gun I
- no further degradation after Cu cathode transfer **but tremendous loss with Cs₂Te cathode**

Analysing spatial distribution of radiation

- 40 OSL (Optically Stimulated Luminescence) dosimeters around the cryostat
- 8 at the circumference of each cavity cell, 4 on the front, 4 on the back plane
- exposed 90 min at 7.1 MV/m (maximum gradient)

Analysing spatial distribution of radiation

- 40 OSL (Optically Stimulated Luminescence) dosimeters around the cryostat
- 8 at the circumference of each cavity cell, 4 on the front, 4 on the back plane
- exposed 90 min at 7.1 MV/m (maximum gradient)

- HZDR
- external quality factor of the pickup antenna for all 4 TM_{010} passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} ; \quad \beta_{out} = \frac{P_t}{P_d}$$

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_i P_t}{2\pi f_0}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

$$\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right) J^{-1/2}$$

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_t}{P_d}$$

- HZDR
- external quality factor of the pickup antenna for all 4 TM_{010} passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} ; \quad \beta_{out} = \frac{P_t}{P_d}$$

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_i P_t}{2\pi f_0}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

$$\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right) J^{-1/2}$$

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_t}{P_d}$$

• external quality factor of the pickup antenna for all 4 TM₀₁₀ passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} \quad ; \quad \beta_{out} = \frac{P_t}{P_d}$$

• stored energy

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_t P_t}{2\pi f_0}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

$$\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right) J^{-1/2}$$

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_t}{P_d}$$

• external quality factor of the pickup antenna for all 4 TM₀₁₀ passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} \quad ; \quad \beta_{out} = \frac{P_t}{P_d}$$

• stored energy

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_t P_t}{2\pi f_0}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

• peak electric field in each cell

$$\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right) J^{-1/2}$$

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_t}{P_d}$$

• external quality factor of the pickup antenna for all 4 TM₀₁₀ passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} \quad ; \quad \beta_{out} = \frac{P_t}{P_d}$$

• stored energy

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_t P_t}{2\pi f_0}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

• peak electric field in each cell

$$\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right)J^{-1/2}$$

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_t}{P_d}$$

• external quality factor of the pickup antenna for all 4 TM_{010} passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} \quad ; \quad \beta_{out} = \frac{P_t}{P_d}$$

• stored energy

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_t P_t}{2\pi f_0}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

• peak electric field in each cell

 $E_{\rm cell}^{\rm mode} = k_{\rm cell}^{\rm mode} \sqrt{U}$

• proportional constant from simulation

 $\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right) J^{-1/2}$

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_t}{P_d}$$

• external quality factor of the pickup antenna for all 4 TM_{010} passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} \quad ; \quad \beta_{out} = \frac{P_t}{P_d}$$

• stored energy

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_t P_t}{2\pi f_0}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

• peak electric field in each cell

 $E_{\rm cell}^{\rm mode} = k_{\rm cell}^{\rm mode} \sqrt{U}$

• proportional constant from simulation

 $\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right) J^{-1/2}$

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_t}{P_d}$$

• external quality factor of the pickup antenna for all 4 TM_{010} passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} ; \quad \beta_{out} = \frac{P_t}{P_d}$$

• stored energy

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_t P_t}{2\pi f_0}$$

• peak electric field in each cell

$$E_{\rm cell}^{\rm mode} = k_{\rm cell}^{\rm mode} \sqrt{U}$$

• proportional constant from simulation

 $\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right) J^{-1/2}$

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_d}{P_d}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

• external quality factor of the pickup antenna for all 4 TM₀₁₀ passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} \quad ; \quad \beta_{out} = \frac{P_t}{P_d}$$

• stored energy

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_t P_t}{2\pi f_0}$$

• peak electric field in each cell

$$E_{\rm cell}^{\rm mode} = k_{\rm cell}^{\rm mode} \sqrt{U}$$

- proportional constant from simulation $\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right) J^{-1/2}$
- intrinsic quality factor

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_t}{P_d}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

• external quality factor of the pickup antenna for all 4 TM₀₁₀ passband modes

$$Q_t = \left(\frac{1}{\beta_{out}} + \frac{\beta_{in}}{\beta_{out}} + 1\right) \frac{f_0}{BW} \quad \text{with} \quad \beta_{in} = \left(S_{11} + 1\right)^2 \frac{P_i}{P_d} \quad ; \quad \beta_{out} = \frac{P_t}{P_d}$$

• stored energy

$$U = \frac{2P_i}{\pi BW} \frac{\beta_{in}}{\beta_{in} + 1} \quad \text{or} \quad U = \frac{Q_t P_t}{2\pi f_0}$$

• peak electric field in each cell

$$E_{\rm cell}^{\rm mode} = k_{\rm cell}^{\rm mode} \sqrt{U}$$

- proportional constant from simulation $\left[k_{\text{cell}}^{\text{mode}}\right] = \left(\text{MV/m}\right) J^{-1/2}$
- intrinsic quality factor

$$Q_0 = \frac{f_0}{BW} \frac{4\beta_{in}}{\beta_{in} + 1} \frac{P_i}{P_d} \quad \text{or} \quad Q_0 = \frac{Q_t P_t}{P_d}$$

	¹ ⁄4 Pi	½ Pi	³ ⁄4 Pi	Pi
f ₀ [MHz]	1267.677	1282.792	1294.764	1300.000
Tau [ms]	140.4	2.38	1.17	2.2
BW [Hz]	2.3	133	272	145
Q _t	1.91E13	2.94E11	1.424E11	2.58E11

- measurement of the energy spectra of the dark current before (1.0 MeV and 2.8 MeV)
- and after high power pulsed RF processing (only 2.8 MeV and 1/3 of total current)
- photo beam energy is 3.6 MeV
- to identify origin of electrons, energy spectra is simulated for different emission points
- circle source at the inner cavity surface is moved along the z-axis
- emission phase is ±45° around oncrest
- particle monitor at beam exit counts electrons

- measurement of the energy spectra of the dark current before (1.0 MeV and 2.8 MeV)
- and after high power pulsed RF processing (only 2.8 MeV and 1/3 of total current)
- photo beam energy is 3.6 MeV
- to identify origin of electrons, energy spectra is simulated for different emission points
- circle source at the inner cavity surface is moved along the z-axis
- emission phase is ±45° around oncrest
- particle monitor at beam exit counts electrons

- measurement of the energy spectra of the dark current before (1.0 MeV and 2.8 MeV)
- and after high power pulsed RF processing (only 2.8 MeV and 1/3 of total current)
- photo beam energy is 3.6 MeV
- to identify origin of electrons, energy spectra is simulated for different emission points
- circle source at the inner cavity surface is moved along the z-axis
- emission phase is ±45° around oncrest
- particle monitor at beam exit counts electrons

- measurement of the energy spectra of the dark current before (1.0 MeV and 2.8 MeV)
- and after high power pulsed RF processing (only 2.8 MeV and 1/3 of total current)
- photo beam energy is 3.6 MeV
- to identify origin of electrons, energy spectra is simulated for different emission points
- circle source at the inner cavity surface is moved along the z-axis
- emission phase is ±45° around oncrest
- particle monitor at beam exit counts electrons

Mitglied der Helmholtz-Gemeinschaft

HZDR

HZD

Mitglied der Helmholtz-Gemeinschaft

0.5 mm

- 1. Still very challenging to build a high gradient SRF gun cavity!!!
- 2. Cavity and cryomodule assembly went smoothly because of experiences of gun I
- 3. 30% loss of usable gradient btw. vertical and horizontal test
- 4. RF performance twice as high as for gun I and good enough for 1 nC and 1mA
- **5.** Serious cavity contamination during 1st Cs₂Te cathode transfer and performance drop by another 30%
- 6. Reason is probably particle moved from cathode surface to the first iris

Thank you for your attention

Backup Slides

- 1. cavity tuning (f_{RT}=1297.660 MHz)
- 2. field flatness (0.79/0.99/1.04/0.99)
- 3. HOM coupler tuning (Q_{ext}<1E11)
- 4. choke tuning (f_{notch}=1253.55 MHz)
- 5. cavity tuner test (<1 Hz/step, ±300 kHz)
- 6. earth's magnetic field shielding (<2 μT)

1. cavity tuning (f_{RT}=1297.660 MHz)

- 2. field flatness (0.79/0.99/1.04/0.99)
- 3. HOM coupler tuning (Q_{ext}<1E11)
- 4. choke tuning (f_{notch}=1253.55 MHz)
- 5. cavity tuner test (<1 Hz/step, ±300 kHz)
- 6. earth's magnetic field shielding (<2 μT)

- 1. cavity tuning (f_{RT}=1297.660 MHz)
- 2. field flatness (0.79/0.99/1.04/0.99)

- 3. HOM coupler tuning (Q_{ext}<1E11)
- 4. choke tuning (f_{notch}=1253.55 MHz)
- 5. cavity tuner test (<1 Hz/step, ±300 kHz)
- 6. earth's magnetic field shielding (<2 μT)

- 1. cavity tuning (f_{RT}=1297.660 MHz)
- 2. field flatness (0.79/0.99/1.04/0.99)

- 3. HOM coupler tuning (Q_{ext}<1E11)
- 4. choke tuning (f_{notch}=1253.55 MHz)
- 5. cavity tuner test (<1 Hz/step, ±300 kHz)
- 6. earth's magnetic field shielding (<2 μT)

1. cavity tuning (f_{RT}=1297.660 MHz)

- 2. field flatness (0.79/0.99/1.04/0.99)
- 3. HOM coupler tuning (Q_{ext}<1E11)
- 4. choke tuning (f_{notch}=1253.55 MHz)
- 5. cavity tuner test (<1 Hz/step, ±300 kHz)
- 6. earth's magnetic field shielding (<2 μT)

- 1. cavity tuning (f_{RT}=1297.660 MHz)
- 2. field flatness (0.79/0.99/1.04/0.99)

- 3. HOM coupler tuning (Q_{ext}<1E11)
- 4. choke tuning (f_{notch}=1253.55 MHz)
- 5. cavity tuner test (<1 Hz/step, ±300 kHz)
- 6. earth's magnetic field shielding (<2 μT)

- 1. cavity tuning (f_{RT}=1297.660 MHz)
- -

2. field flatness (0.79/0.99/1.04/0.99)

- 3. HOM coupler tuning (Q_{ext}<1E11)
- 4. choke tuning (f_{notch}=1253.55 MHz)
- 5. cavity tuner test (<1 Hz/step, ±300 kHz)
- 6. earth's magnetic field shielding (<2 μT)

Lorentz force detuning

$$k_{acc} = k_{peak} \left(\frac{E_{peak}}{E_{acc}}\right)^2 \qquad \frac{E_{peak}}{E_{acc}} = 2.56$$

Lorentz force detuning

Lorentz force detuning

0

RF window limits the Gradient to 8 MV/m

Mitglied der Helmholtz-Gemeinschaf

New RF window does not limits the Gradient

green: temp blue: gradient magenta: vacuum

Solution

RF Waveguide window made from Quartz heats up to ~27°C (limit is 60°C) at 8 MV/m.

Mitglied der Helmholtz-Gemeinschaft

- Cathodes polished (Ra 10nm) and cleaned with Ar⁺
- Heated to 120° C and evaporated with Cs and Te (successive- or simultaneously) until QE saturated
- Online thickness and QE measurement
- QE distribution scan after preparation

- Cathodes polished (Ra 10nm) and cleaned with Ar⁺
- Heated to 120° C and evaporated with Cs and Te (successive- or simultaneously) until QE saturated
- Online thickness and QE measurement
- QE distribution scan after preparation

