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CAVITY
• In operation from Sept. 2007 until April 2014
• Gradient limited by FE

PHOTOCATHODES
• Long lifetime in SRF gun (>1 yr, total charge 264 C @ QE � 0.6 % ) 
• No cavity degradation during first 4 years
• Multipacting at the cathode stalk, suppression with DC Bias
• High dark current with similar properties as the photo beam

OPERATION @ ELBE
• Despite of low gradient successful experiments and measurements:

Far-IR FEL operation, Compton-backscattering with TW laser, Superradiant
THz radiation, Slice emittance, Longitudinal phase space measurements

FUTURE
• Refurbish ELBE SRF gun I to have a spare part 

Summary of ELBE SRF gun I
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Design of the ELBE SRF gun II
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Design of the ELBE SRF gun II

• Cs2Te, Cu, GaAs, Mg cathode 
• Cooled by LN2 to 77 K
• Therm. and electr. isolated from cavity
• Up to 7 kV DC bias for MP suppression
• Moveable and tiltable by remote stepper
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Design of the ELBE SRF gun II

• Cs2Te, Cu, GaAs, Mg cathode 
• Cooled by LN2 to 77 K
• Therm. and electr. isolated from cavity
• Up to 7 kV DC bias for MP suppression
• Moveable and tiltable by remote stepper

cathode cooler

cathode tip

LN2 reservoir
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Design of the ELBE SRF gun II

• SC solenoid by Niowave Inc. (2 K) 
• Remote controlled xy-table (77 K)
• Field mapping at room temperature
• On axis field profile Bz,max = 449 mT @ 10 A

beam axis
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• Remote controlled xy-table (77 K)
• Field mapping at room temperature
• On axis field profile Bz,max = 449 mT @ 10 A

beam axis

• Additional half-cell stiffening (light 
green) to reduce Lorentz force detuning, 
microphonics and pressure sensitivity

• Larger cathode boring to avoid contact 
with cathode tip

• Modified pickup for better cleaning and 
clean room assembly
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A stony path to a new cavity

• Fabrication and vertical test of two new cavity in in 
collaboration with JLab (P. Kneisel and co-workers)

• A RRR300 fine grain and a large grain cavity

• Main objective: achieve design value of Epk=50 MV/m
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 Test#13 (May 23, 2013) after HPR retreatment
 Q0 limit corresponding to a refrigerator power of 30 W
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beam energy of 8 MeV
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beam pipe transition

Cold mass cleanroom assembly at JLab
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beam pipe transition

Cold mass cleanroom assembly at JLab

cathode cooler with Cu cathode

main coupler

successfully leak checked
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Cryomodule assembly at Rossendorfy y

cold mass finalization, HZDR, Jan. 2014
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Cryomodule assembly at Rossendorfy y

cold mass finalization, HZDR, Jan. 2014

cryomodule assembly, HZDR, Feb. 2014

cryomodule assembly, HZDR, Feb. 2014
marriage, HZDR, Mar. 2014
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Procession of SRF gun II into the bunker

“procession” of SRF Gun II into the bunker, HZDR, 5th May 2014
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Procession of SRF gun II into the bunker

“procession” of SRF Gun II into the bunker, HZDR, 5th May 2014

SRF Gun II in the bunker, HZDR, 19th May 2014
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Field profile and external Q’s

field profile

• TM010 frequencies in combination with 
latest bead pull results used to estimate 
the field profile of the accelerating mode
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Pressure sensitivity

• Pressure sensitivity relatively high but because of high stability of helium machine (<0.1 
mbar) not critical for stable RF operation

• Nevertheless, filling cycle of LN2 shield cooling causes a frequency shift of about 200 Hz, 
which needs to be compensated by automatic cavity tuning
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Closed loop microphonics

Parameters

• loop gain: 127 
• bandwidth: 300 Hz
• gradient: 9 MV/m

• Measurement of closed loop phase noise time signal
• Calculation and integration of PSD to separate main frequency components
• Calculation of total frequency detuning using BW, Kp and σphase
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Closed loop microphonics

Parameters

• loop gain: 127 
• bandwidth: 300 Hz
• gradient: 9 MV/m

Results

• σphase = 0.02° (RMS)
• σfrequency = 6.6 Hz (RMS)

• main contributors: 
10 Hz, 24 Hz (pumps)
20 Hz, 80 Hz (unknown)

→Microphonics is no issue

• Measurement of closed loop phase noise time signal
• Calculation and integration of PSD to separate main frequency components
• Calculation of total frequency detuning using BW, Kp and σphase
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Formulas:
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Formulas:

QQ0QQ0 vs s EEacc

• both quantities were determined independently by measuring Pi and Pd or Pt and Pd

• 30% performance loss compared to the last vertical test, but twice the gradient of SRF gun I

• no further degradation after Cu cathode transfer but tremendous loss with Cs2Te cathode
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Formulas:

QQ0QQ0 vs s EEacc

• both quantities were determined independently by measuring Pi and Pd or Pt and Pd

• 30% performance loss compared to the last vertical test, but twice the gradient of SRF gun I

• no further degradation after Cu cathode transfer but tremendous loss with Cs2Te cathode
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• 40 OSL (Optically Stimulated Luminescence) dosimeters around the cryostat
• 8 at the circumference of each cavity cell, 4 on the front, 4 on the back plane
• exposed 90 min at 7.1 MV/m (maximum gradient)

Analysing spatial distribution of radiation

0°
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90°
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180° beam path

4 on the
back plane

4 on the
front plane
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• 40 OSL (Optically Stimulated Luminescence) dosimeters around the cryostat
• 8 at the circumference of each cavity cell, 4 on the front, 4 on the back plane
• exposed 90 min at 7.1 MV/m (maximum gradient)
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QvsEE in each cell for all modes 
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QvsEE in each cell for all modes 
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QvsEE in each cell for all modes 
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QvsEE in each cell for all modes 
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QvsEE in each cell for all modes 
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QvsEE in each cell for all modes 
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QvsEE in each cell for all modes 
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QvsEE in each cell for all modes 
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Dark current analysis
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Dark current analysis

• measurement of the energy spectra of the 
dark current before (1.0 MeV and 2.8 MeV)

• and after high power pulsed RF processing 
(only 2.8 MeV and 1/3 of total current)

• photo beam energy is 3.6 MeV 

• to identify origin of electrons, energy spectra 
is simulated for different emission points

• circle source at the inner cavity surface is 
moved along the z-axis

• emission phase is ±45° around oncrest
• particle monitor at beam exit counts electrons



Slide 76

Dark current analysis

• measurement of the energy spectra of the
dark current before (1.0 MeV and 2.8 MeV)

• and after high power pulsed RF processing
(only 2.8 MeV and 1/3 of total current)

• photo beam energy is 3.6 MeV

• to identify origin of electrons, energy spectra
is simulated for different emission points

• circle source at the inner cavity surface is
moved along the z-axis

• emission phase is ±45° around oncrest
• particle monitor at beam exit counts electrons



Slide 77

Dark current analysis

• measurement of the energy spectra of the
dark current before (1.0 MeV and 2.8 MeV)

• and after high power pulsed RF processing
(only 2.8 MeV and 1/3 of total current)

• photo beam energy is 3.6 MeV

• to identify origin of electrons, energy spectra
is simulated for different emission points

• circle source at the inner cavity surface is
moved along the z-axis

• emission phase is ±45° around oncrest
• particle monitor at beam exit counts electrons



Slide 78

Dark current analysis

• measurement of the energy spectra of the
dark current before (1.0 MeV and 2.8 MeV)

• and after high power pulsed RF processing
(only 2.8 MeV and 1/3 of total current)

• photo beam energy is 3.6 MeV

• to identify origin of electrons, energy spectra
is simulated for different emission points

• circle source at the inner cavity surface is
moved along the z-axis

• emission phase is ±45° around oncrest
• particle monitor at beam exit counts electrons






Slide 79

Dark current analysis
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Dark current analysis
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CCandidates for contamination
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0.5 mm

CCandidates for contamination
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0.5 mm 0.5 mm

CCandidates for contamination
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Summary

1. Still very challenging to build a high gradient SRF gun cavity!!!

2. Cavity and cryomodule assembly went smoothly because of experiences of gun I

3. 30% loss of usable gradient btw. vertical and horizontal test 

4. RF performance twice as high as for gun I and good enough for 1 nC and 1mA

5. Serious cavity contamination during 1st Cs2Te cathode transfer and performance 
drop  by another 30% 

6. Reason is probably particle moved from cathode surface to the first iris

Thank you for your attention
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Backup Slides



Slide 90

Cryomodule assembly at Rossendorf

1. cavity tuning
(fRT=1297.660 MHz)

2. field flatness 
(0.79/0.99/1.04/0.99)

3. HOM coupler tuning
(Qext<1E11)

4. choke tuning
(fnotch=1253.55 MHz)

5. cavity tuner test
(<1 Hz/step, ±300 kHz)

6. earth‘s magnetic 
field shielding (<2 μT)
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(0.79/0.99/1.04/0.99)

3. HOM coupler tuning
(Qext<1E11)

4. choke tuning
(fnotch=1253.55 MHz)

5. cavity tuner test
(<1 Hz/step, ±300 kHz)

6. earth‘s magnetic 
field shielding (<2 μT)
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6. earth‘s magnetic 
field shielding (<2 μT)
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Lorentz z f force e ddetuning
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Lorentz z f force e ddetuning

• LF coefficient is 2x higher than for gun I
• 3x higher than in simulation and even 
• 6x higher than for TESLA 9cell cavities

• plotting detuning vs. peak electric fields 
for each mode clearly point on half cell

• additional stiffeners are not enough
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RF window limits the Gradient to 8 MV/m 

Problem

RF Waveguide window made 
from Rexolite (cross linked 
polystyrene microwave plastic) 
heats up to ~55°C (limit is 60°C).

green: temp
blue: gradient
magenta: vacuum
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green: temp
blue: gradient
magenta: vacuum

New RF window does not limits the Gradient

Solution

RF Waveguide window made 
from Quartz heats up to ~27°C 
(limit is 60°C) at 8 MV/m.
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Preparation of Cs2Te Cathodes
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• Cathodes polished (Ra 10nm) and cleaned with Ar+

• Heated to 120° C and evaporated with Cs and Te 
(successive- or simultaneously) until QE saturated

• Online thickness and QE measurement 
• QE distribution scan after preparation

Preparation of Cs2Te Cathodes
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• Cathodes polished (Ra 10nm) and cleaned with Ar+

• Heated to 120° C and evaporated with Cs and Te 
(successive- or simultaneously) until QE saturated

• Online thickness and QE measurement 
• QE distribution scan after preparation

Preparation of Cs2Te Cathodes




