

High Accuracy Adaptive (transverse) Laser and Electron Beam Shaping

…and a bit about DC gun emittance vs. gun gap

Jared Maxson Cornell University

ERL 2015, BNL

Outline

II. Methods for transverse laser shaping

III. Adaptive electron beam shaping with a spatial light modulator.

Outline

II. Methods for transverse laser shaping

III. Adaptive electron beam shaping with a spatial light modulator.

Motivation: simulation vs. expt.

Use MOGA to determine optimum laser distribution +beamline settings:

Data courtesy of Colwyn Gulliford. 4 C. Gulliford et al., Appl. Phys. Lett. **106**, 094101 (2015)

Motivation: simulation vs. expt.

Use MOGA to determine optimum laser distribution +beamline settings:

Motivation: simulation vs. expt.

Use MOGA to determine optimum laser distribution +beamline settings:

Most of the optimal front dominated by thermal emittance!

Can it be demonstrated experimentally?

Motivation: simulation vs. expt.

Motivation: simulation vs. expt.

Motivation: simulation vs. expt.

C. Gulliford et al., Appl. Phys. Lett. **106**, 094101 (2015)

• Now, force the optimizer to use the actual measured beam transverse profile!

- **Previous optimizations: want something accurate!**
- **Practical aspects of laser shaping: Want something adaptive.**
- Quantum Efficiency of cathodes has spatial variation (from growth)

- Cornell grown NaKSb
- QE damaged during high current operation. Laser shaping could "fill" in the holes!

CEBAF GaAs cathode: 1980 (Vol. 110), 2007 3 offset laser spots used.

J. Grames, AIP Conf. Proc.

Outline

- **Want something accurate and adaptive.**
- **Would be nice if it were efficient, too!**
- I. Methods for transverse laser shaping

II. Adaptive electron beam shaping with a spatial light modulator.

Outline

- **Want something accurate and adaptive.**
- **Would be nice if it were efficient, too!**
- I. Methods for transverse laser shaping

II. Adaptive electron beam shaping with a spatial light modulator.

- **Want something accurate and adaptive.**
- **Would be nice if it were efficient, too!**
- I. Methods for transverse laser shaping
	- We have tried lots of things:
		- Commercial, cheap shapers exist, not generally adaptive
		- Deformable mirror ? (H Tomizawa, Quantum Electronics, 2007) \rightarrow not accurate enough.

Outline

I. Adaptive electron beam shaping with a spatial light modulator.

Liquid Crystal SLMs

- *SMALL* array of electronically controlled LCs
	- 20 um pixel pitch!
	- 95% fill factor
- Each pixel is capable of applying a different phase delay $\phi_{ij} \sim \phi(x, y) \in [0, 2\pi]$ to linearly polarized light
- *Thermal* damage threshold roughly 1 W/cm²
- Can function as a:

HPK Photonics **Generalized lens (refractive shaper):**

Liquid Crystal SLMs

- *SMALL* array of electronically controlled LCs
	- 20 um pixel pitch!
	- 95% fill factor
- Each pixel is capable of applying a different phase delay $\phi_{ij} \sim \phi(x, y) \in [0, 2\pi]$ to linearly polarized light
- *Thermal* damage threshold roughly 1 W/cm²
- Can function as a:

Liquid Crystal SLMs

- *SMALL* array of electronically controlled LCs
	- 20 um pixel pitch!
	- 95% fill factor
- Each pixel is capable of applying a different phase delay $\phi_{ij} \sim \phi(x, y) \in [0, 2\pi]$ to linearly polarized light
- *Thermal* damage threshold roughly 1 W/cm²
- Can function as a:

Liquid Crystal SLMs

- *SMALL* array of electronically controlled LCs
	- 20 um pixel pitch!
	- 95% fill factor
- Each pixel is capable of applying a different phase delay $\phi_{ij} \sim \phi(x, y) \in [0, 2\pi]$ to linearly polarized light
- *Thermal* damage threshold roughly 1 W/cm²
- Can function as a:

Refractive Shaping

- Constructed a new algorithm to compute adaptive refractive phases for non-ideal profiles.
- Even still, not accurate enough (but very efficient! \sim 90%)

Refractive Shaping

- Constructed a new algorithm to compute adaptive refractive phases for non-ideal profiles.
- Even still, not accurate enough (but very efficient! \sim 90%)

 $A)$

 \circ

Diffractive Shaping

- Iterative FT transform to calculate phases
- Throws out light
- Current technology limits the discontinuity of phase
- Hard (not impossible) to predict efficiency beforehand.

Changing input and output beam size

Max

Efficiency = $15%$

 \mathbf{C}

Error = 33% Efficiency = 34%

 Ω

D)

Refractive Shaping

- Constructed a new algorithm to compute adaptive refractive phases for non-ideal profiles.
- Even still, not accurate enough (but very efficient! \sim 90%)

Diffractive Shaping

- Iterative FT transform to calculate phases
- Throws out light
- Current technology limits the discontinuity of phase
- Hard (not impossible) to predict efficiency beforehand.

Max

 $A)$

0

Changing input and output beam size

Error = 3.6% Efficiency $= 15\%$

Error = 33% Efficiency = 34%

D)

Polarization Subtractive Shaping

- Simple to setup, compute phase
- Efficiency matches simple estimates
- Nearly as accurate as the diffractive method!

Refractive Shaping

- Constructed a new algorithm to compute adaptive refractive phases for non-ideal profiles.
- Even still, not accurate enough (but very efficient! \sim 90%)

Diffractive Shaping

- Iterative FT transform to calculate phases
- Throws out light
- Current technology limits the discontinuity of phase
- Hard (not impossible) to predict efficiency beforehand.

 $A)$ Target

 \mathbf{O}

Changing input and output beam size Max

Error = 3.6% Efficiency $= 15\%$

Error = 33% Efficiency = 34%

D)

Polarization Subtractive Shaping

- Simple to setup, compute phase
- Efficiency matches simple estimates
- Nearly as accurate as the diffractive method!

J Maxson et al., Applied Physics Letters 105, 171109 (2014);

Outline

- I. Motivation: Why do you want from your laser shaper?
	- **Want something accurate and adaptive.**
	- **Would be nice if it were efficient, too!**
- II. Methods for transverse laser shaping
	- We have tried lots of things:
		- Commercial, cheap shapers exist, not generally adaptive
		- Deformable mirror ?(H Tomizawa, Quantum Electronics, 2007) \rightarrow not accurate enough.

– **Liquid crystal SLM is nearly ideal for dc gun photoinjectors**

III. Adaptive electron beam shaping with a spatial light modulator.

Outline

- I. Motivation: Why do you want from your laser shaper?
	- **Want something accurate and adaptive.**
	- **Would be nice if it were efficient, too!**
- II. Methods for transverse laser shaping
	- We have tried lots of things:
		- Commercial, cheap shapers exist, not generally adaptive
		- Deformable mirror ?(H Tomizawa, Quantum Electronics, 2007) \rightarrow not accurate enough.
		- **Liquid crystal SLM is nearly ideal for dc gun photoinjectors**

III. Adaptive electron beam shaping with a spatial light modulator.

Shaped lasers->Shaped e-beams

J.Maxson et al., PRSTAB **18**, 023401 (2015) *DC 532 nm laser input (no space charge)*

Shaped lasers->Shaped e-beams

J.Maxson et al., PRSTAB **18**, 023401 (2015) *DC 532 nm laser input (no space charge)*

Shaped lasers->Shaped e-beams

(Cartoon of) Cornell Segmented 400 kV Gun

Shaped lasers->Shaped e-beams

(Cartoon of) Cornell Segmented 400 kV Gun

J.Maxson et al., PRSTAB **18**, 023401 (2015)

DC 532 nm laser input (no space charge)

Imaging the Electrons

Imaging the Electrons

- Transmit previous flattop to the photocathode.
- Electron beam output: Both QE and the laser are flat.

J.Maxson et al., PRSTAB **18**, 023401 (2015) 30

Imaging the Electrons

- Transmit previous flattop to the photocathode.
- Electron beam output: Both QE and the laser are flat.

J.Maxson et al., PRSTAB **18**, 023401 (2015) 31

Electron beam feedback

• We can account for stray field (and solenoid rotation) by **measuring the coordinate transformation between the SLM and the viewscreen.**

Knowing this, we can feedback directly on the e-beam. Never image the photons!

Beam feedback: Additional shapes

• A few additional demonstrative shapes:

Detailed Shapes

Detailed Shapes

Detailed Shapes

Detailed Shapes

Back to preshaping the laser: try something harder!

• Sharp features are well preserved!

Detailed Shapes: e-beam feedback

- e-beam establishes an extremely precise relationship between the SLM \rightarrow photocathode \rightarrow viewscreen
- We can both account for (measure!) electron aberrations and QE variations.

Conclusions

- High accuracy, adaptive laser transverse profiles boost brightness and operational stability for high current accelerators.
- SLMs operating in the polarization subtraction mode well-suited for photoinjector shaping.
- **Accurate, adaptive electron transverse electron beam distributions are a reality.**

NSF

Acknowledgements

- Many acknowledgements required!
	- Advisors (formal or otherwise): Ivan Bazarov, Bruce Dunham, Karl Smolenski
	- All things mechanical: Tobey Moore, Jeff Mangus, Mitch Bush, Ed Foster, John Stilwell, Jim Sexton, Mike Palmer
	- Cathodes: Luca Cultrera
	- Technical support: John Dobbins, Adam Bartnik, John Barley
	- Vacuum: Yulin Li, Xianghong Liu, Brian Kemp, Tobey Moore
	- Fellows grads: Colwyn Gulliford, Siddharth Karkare, Hyeri Lee
	- Many, many more among CESR and CHESS!

…a bit about DC gun emittance vs. gap

I

u

l

t

o

Cornell MKII Gun: Segmented

Cornell MKII Gun: Segmented

Cornell MKII Gun: Segmented

 $|E|$ (MV/m)

SRF cavity!

A movable anode

• A moveable anode provides an adjustable photocathode field.

HV Performance

J. Maxson et al., RSI **85**, 093306 (2014)

P. Slade, *The Vacuum Interrupter*, CRC Press, 2008

HV Performance

J. Maxson et al., RSI **85**, 093306 (2014)

P. Slade, *The Vacuum Interrupter*, CRC Press, 2008

HV Performance

J. Maxson et al., RSI **85**, 093306 (2014)

P. Slade, *The Vacuum Interrupter*, CRC Press, 2008

- Surprisingly good agreement between different HV systems.
- But what configuration is best for the beam emittance? –Turn to simulations.

DC gun, various gaps

- Choose 3 Cornell style guns as the injector source \rightarrow use MOGA
	- 500 kV: 70mm
	- 450 kV: 50 mm
	- 400 kV: 30 mm

- 500 kV: 70mm
- 450 kV: 50 mm
- -400 kV : 30 mm
- Optimize these 3 w.r.t. emittance, fix only the gun voltage and $MTE = 120$ meV. Vary everything else.

- 500 kV: 70mm
- 450 kV: 50 mm
- 400 kV: 30 mm
- Optimize these 3 w.r.t. emittance, fix only the gun voltage and $MTE = 120$ meV. Vary everything else.

- 500 kV: 70mm
- 450 kV: 50 mm
- 400 kV: 30 mm
- Optimize these 3 w.r.t. emittance, fix only the gun voltage and $MTE = 120$ meV. Vary everything else.

- 500 kV: 70mm
- 450 kV: 50 mm
- 400 kV: 30 mm
- Optimize these 3 w.r.t. emittance, fix only the gun voltage and $MTE = 120$ meV. Vary everything else.

How about the **core** *emittance?*

58

 0.5

 0.4

J. Maxson et al., RSI **85**, 093306 (2014)

bunch charge (nC)

 0.3

 0.2

 0.1

• Core emittance is a **strong invariant.** (RMS emittance is not.)

• DC gun experimental beamline:

Temporal Shaping with SLM

• Birefringent temporal shaping crystals + downstream linear polarizer?

