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Beam

A wire scanner is a diagnostic used 

to measure transverse beam profiles.

2

A typical measurement scheme:

1) Intercept the beam with a wire

2) Scattered x-rays (or sometimes other particles) 

are generated when the beam hits the wire.

3) Measure the signal, usually with a scintillator + 

a photomultiplier combination.

4) The signal directly corresponds to the beam’s 

profile.

Wire acceleration methods vary, but

Fork designs are the most common.

There are also more exotic designs, 

like laser wire scanners.



Motivation for a new design
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Parameter Low current Nominal/High current

Beam energy 5 – 15 MeV 5 – 15 MeV

Beam size ~ 2 mm ~ 2 mm

Norm. Emittance < 0.3 µm (measured) < 0.3 µm (simulated)

Bunch length < 3 ps < 3 ps

Current < 100 nA 100 mA

Beam Power < 1 kW 1 MW 
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We want to study beam 
physics at high current 
in the Cornell ERL 
photoinjector.

The problem: 

We can take low 
current measurements, 
but things become 
challenging at high 
current.



Common Beam Diagnostics

• BPMs

• Viewscreens

• Slits (for emittance)

• Pepperpot (for emittance)

• Synchrotron radiation monitors

• X-Ray beam size monitor

• Laser wire scanners

• Conventional Wire scanners
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Photoinjector below 100 nA

• BPMs

• Viewscreens

• Slits (for emittance)

• Pepperpot (for emittance)

• Synchrotron radiation monitors

• X-Ray beam size monitor

• Laser wire scanners

• Conventional Wire scanners

(low energy linac)

(low energy linac)
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Photoinjector above 1 mA
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Wire scanner design goals

Main Goal: 

Avoid melted wires 

Requirements:

1) Wire speeds > 20 m/s (45 mph)

2) ~10’s µm resolution

3) Cheap

4) Compact

5) Quick to build and implement

Most wire scanners 

move at mm/s or 

cm/s.
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A fast wire speed minimizes heating
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Maximum temperature reached 

during a single scan (simulated)

Deposited energy
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A fast wire speed minimizes heating
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Maximum temperature reached 

during a single scan (simulated)

Cooling factor = 0.3
About 70% heat is lost from ejected secondary particles

K. Wittenburg from DESY, “Conventional wire scanners for Tesla”
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Deposited energy



A fast wire speed minimizes heating
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Choosing a wire material
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Carbon Tungsten

Cp (cal / g / ˚C ) 0.42* 0.055

Melting/

Sublimation (K)

3915 3695

Durability Brittle Durable

* Cp for Carbon scales with temperature; this is for 1000 ˚C

It’s a tradeoff  between 

heat capacity and 

durability.

Carbon is the first 

choice because it 

withstands heat so well.

Tungsten is a good 

secondary choice, and 

is more durable.
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Two obvious questions:

1) Why use 2 gears?

2) Will the wire 
bend/vibrate?
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Why use 2 gears?

Without a two gear design, for 
any wire scanner to reach 20 m/s (45 
mph), 
you would need either:

1) More acceleration
- Risk breaking wire

2) Larger path length
- Size issues

A two gear design results in a 
significant speed boost:

76

R = distance from center 

of blade to center of  

beam pipe

R2 = radius of  small 

gear
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Moving wire

Taking pictures at 20 m/s

Wire Intercepts 

the beam here
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We captured several images of  the moving 

carbon wire on a single camera frame, 

by using a modulating laser
(8 KHz rep rate, 7 μs pulse duration).

Stationary wire

The wire’s velocity profile
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We captured several images of  the moving 

carbon wire on a single camera frame, 

by using a modulating laser
(8 KHz rep rate, 7 μs pulse duration).

To avoid excess vibrations (which lead 

to measurement errors), we program the 

motor with a smooth velocity profile.
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The wire’s velocity profile



Moving wire

Taking pictures at 20 m/s

Wire Intercepts 

the beam here

85

We captured several images of  the moving 

carbon wire on a single camera frame, 

by using a modulating laser
(8 KHz rep rate, 7 μs pulse duration).

To avoid excess vibrations (which lead 

to measurement errors), we program the 

motor with a smooth velocity profile.

Stationary wire

The wire’s velocity profile



v0 = 5 m/s

Dx = A sin(w t)

Dv = A w cos(w t)
2) Peak separation

1) Beam width

• Beam width depends on speed of  each wire

• Peak separation depends only on separation of  wires (not speed)

Vibration analysis using 2 wires
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Viewscreen = 0.72 mm

Wire scanner = 0.86 ± 0.22 mm (25% error)

A w = 0.25 x 5 m/s = 1.25 m/s

Wire separation = 11 ± 4 mm  (36% error)

Separation error = 4 mm = √2 A

Estimation of  error due to wire vibrations

Implies A = 2.6 mm Implies A = 2.8 mm

If  the amplitude doesn’t increase, at v = 20 m/s, we expect only 6% error.

f  = 75 Hz (found using a modulating laser)

v0 = 5 m/s

Dx = A sin(w t)

Dv = A w cos(w t)
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At 20 m/s it works great!
Comparisons with viewscreens at low beam current (~100 nA)

High repetition rate

Low bunch charge

Low repetition rate

High bunch charge
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v0 = 20 m/s



It works!
Vertical beam profile 

measurements taken at 

Cornell’s ERL 

Photoinjector

Note:  Each (normalized) curve is presented 

on the same plot only for easy comparison. 90

Parameter Used for experiments

Beam type Electron

Energy 4 MeV

Power 0.5 MW

Current < 35 mA

Bunch Charge < 27 pC

Repetition rate 1.3 GHz / 50 MHz

Emittance 0.3 μm

Trans. Beam Size ~ 3 mm



Take home messages

• Great option for high current/intensity beams

– It works!

– Compact ( ~40 cm )

– Cheap ( < $5000 )

– Quick to build (only 2 custom parts)
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Check out the publication for more info:

T. Moore “A Fast Wire Scanner for Intense Electron Beams” 

Phys. Rev. ST Accel. Beams 17, 022801 
http://journals.aps.org/prstab/abstract/10.1103/PhysRevSTAB.17.022801

Thanks to Tobey Moore, our vacuum technician, for inventing this great 
design.  And reminding us to keep it simple!

And thanks to the rest 

of  the Cornell team:
Nick Agladze

Ivan Bazarov

Adam Bartnik

John Dobbins

Bruce Dunham

Yulin Li

Jim Savino

Karl Smolenski

Contact: Steve Full at sf345@cornell.edu

This work was supported by the financial assistance from the National Science Foundation (Grant No. DMR-0807731). 92

Thank you for listening!

http://journals.aps.org/prstab/abstract/10.1103/PhysRevSTAB.17.022801
mailto:sf345@cornell.edu



