

A fast rotating wire scanner for use in high intensity accelerators

Steven Full CLASSE, Cornell University ERL Workshop 2015 June 11th, 2015

A wire scanner is a diagnostic used to measure **transverse beam profiles.**

A typical measurement scheme:

- Intercept the beam with a wire
- 2) Scattered x-rays (or sometimes other particles) are generated when the beam hits the wire.
- 3) Measure the signal, usually with a scintillator + a photomultiplier combination.
- 4) The signal directly corresponds to the beam's profile.

Wire acceleration methods vary, but Fork designs are the most common.

There are also more exotic designs, like laser wire scanners.

Motivation for a new design

We want to study beam physics at high current in the Cornell ERL photoinjector. The problem: We can take low current measurements, but things become challenging at high current.

Low current	Nominal/High current
5 – 15 MeV	5 – 15 MeV
~ 2 mm	~ 2 mm
< 0.3 µm (measured)	< 0.3 µm (simulated)
< 3 ps	< 3 ps
< 100 nA	100 mA
< 1 kW	1 MW
	Low current 5 – 15 MeV ~ 2 mm < 0.3 µm (measured) < 3 ps < 100 nA < 1 kW

Common Beam Diagnostics

- BPMs
- Viewscreens
- Slits (for emittance)
- Pepperpot (for emittance)
- Synchrotron radiation monitors
- X-Ray beam size monitor
- Laser wire scanners
- Conventional Wire scanners

Photoinjector below 100 nA

- BPMs
- Viewscreens
- Slits (for emittance)
- Pepperpot (for emittance)
- Synchrotron radiation monitors
- X-Ray beam size monitor
- Laser wire scanners
- Conventional Wire scanners

(low energy linac)

(low energy linac)

(viable but difficult)

Photoinjector above 1 mA

- BPMs
- Viewscreens
- Slits (for emittance)
- Pepperpot (for emittance)
- Synchrotron radiation monitors
- X-Ray beam size monitor
- Laser wire scanners
- Conventional Wire scanners

(melts)

(melts)

(melts)

(low energy linac)

(low energy linac)

(viable but difficult)

(melts)

Photoinjector above 1 mA

- BPMs
- Viewscreens
- Slits (for emittance)
- Pepperpot (for emittance)
- Synchrotron radiation monitors
- X-Ray beam size monitor
- Laser wire scanners
- Conventional Wire scanners Let's come up with a new design.

(melts)

(melts)

(melts)

(low energy linac)

(low energy linac)

(viable but difficult)

Photoinjector above 1 mA

- BPMs
- Viewscreens
- Slits (for emittance)
- Pepperpot (for emittance)
- Synchrotron radiation monitors
- X-Ray beam size monitor
- Laser wire scanners

• Conventional Wire scanners

Let's come up with a new design.

(melts)

(melts)

(melts)

(low energy linac)

(low energy linac)

(viable but difficult)

Wire scanner design goals

Main Goal:

Avoid melted wires

Requirements:

- 1) Wire speeds > 20 m/s (45 mph)
- 2) ~10's μ m resolution
- 3) Cheap
- 4) Compact
- 5) Quick to build and implement

Most wire scanners move at mm/s or cm/s.

A fast wire speed minimizes heating

6

4

8

Maximum temperature reached during a single scan (simulated)

12

velocity [m/s]

14

16

10

20

A fast wire speed minimizes heating

Choosing a wire material

It's a tradeoff between heat capacity and durability.

Carbon is the first choice because it withstands heat so well.

Tungsten is a good secondary choice, and is more durable.

	Carbon	Tungsten
C_p (cal / g / °C)	0.42*	0.055
Melting/ Sublimation (K)	3915	3695
Durability	Brittle	Durable

* C_p for Carbon scales with temperature; this is for 1000 °C

A cartoon of the 2 gear design

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

Detection

A cartoon of the 2 gear design

Detection

A cartoon of the 2 gear design

Detection

A cartoon of the 2 gear design

Detection

A cartoon of the 2 gear design

Detection

A cartoon of the 2 gear design

Detection

A cartoon of the 2 gear design

A cartoon of the 2 gear design

A cartoon of the 2 gear design

Detection

A cartoon of the 2 gear design

A cartoon of the 2 gear design

A cartoon of the 2 gear design

Outside view

Stepper motor

Outside view

Ferrofluidic Rotary feedthrough

motor

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Outside view

Ferrofluidic Rotary feedthrough

Outside view

motor

Stepper

Ferrofluidic Rotary feedthrough

Outside view

Ferrofluidic Rotary feedthrough

motor

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Outside view

Ferrofluidic Rotary feedthrough

motor

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Outside view

Ferrofluidic Rotary feedthrough

motor

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Outside view

Ferrofluidic Rotary feedthrough

> Vacuum flanges

Viewports

motor

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

motor

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

motor

Rotary

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Outside view

Beam pipe

3D model of the design

Vacuum Flange

3D model of the design

Vacuum Flange

3D model of the design

Vacuum Flange

Beam

3D model of the design

gear

Large

Large

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Why use 2 gears?

Without a two gear design, for any wire scanner to reach 20 m/s (45 mph), you would need either:

- More acceleration
 Risk breaking wire
- 2) Larger path length
 - Size issues

A two gear design results in a significant speed boost:

$$v_s = v_g \left(\frac{R}{R_2} + 1\right)$$

R = distance from center of blade to center of beam pipe R2 = radius of small gear

Why use 2 gears?

Without a two gear design, for any wire scanner to reach 20 m/s (45 mph), you would need either:

- More acceleration
 Risk breaking wire
- 2) Larger path length
 - Size issues

A two gear design results in a significant speed boost:

$$v_s = v_g \left(\frac{\pi}{R_2} + 1\right)$$
$$\mathbf{v_s} \sim \mathbf{6} \ \mathbf{v_g}$$

/ P

R = distance from center of blade to center of beam pipe R2 = radius of small gear

Our design is about 6x faster than a single gear design

Taking pictures at 20 m/s

4 -0 --2 --4 -12 14 16 18 20 22 24 26 Position along the wire (mm) Moving wire

We captured several images of the moving carbon wire on a single camera frame, by using a modulating laser (8 KHz rep rate, 7 µs pulse duration).

The wire's velocity profile

Taking pictures at 20 m/s

The wire's velocity profile

Taking pictures at 20 m/s

The wire's velocity profile

Taking pictures at 20 m/s

The wire's velocity profile

Taking pictures at 20 m/s

The wire's velocity profile

Taking pictures at 20 m/s

The wire's velocity profile

Taking pictures at 20 m/s

The wire's velocity profile

We captured several images of the moving carbon wire on a single camera frame, by using a modulating laser (8 KHz rep rate, 7 µs pulse duration).

To avoid excess vibrations (which lead to measurement errors), we program the motor with a smooth velocity profile. 84

Taking pictures at 20 m/s

2

The wire's velocity profile

Scanning direction position (mm) -2 24 12 14 20 26 16 18 22 Position along the wire (mm) Moving wire We captured several images of the moving carbon wire on a single camera frame, by using a modulating laser (8 KHz rep rate, 7 µs pulse duration).

To avoid excess vibrations (which lead to measurement errors), we program the motor with a smooth velocity profile. 85

- Beam width depends on speed of each wire
- Peak separation depends only on separation of wires (not speed) 9/9/2015

Estimation of error due to wire vibrations

Cornell Laboratory for

Education (CLASSE)

Accelerator-based Sciences and

Viewscreen = 0.72 mmWire scanner = $0.86 \pm 0.22 \text{ mm}$ (25% error) A $\omega = 0.25 \text{ x} 5 \text{ m/s} = 1.25 \text{ m/s}$

 \implies Implies A = 2.6 mm

 $\Delta x = A \sin(\omega t)$ $\Delta v = A \omega \cos(\omega t)$ Wire separation = 11 ± 4 mm (36% error) Separation error = 4 mm = $\sqrt{2}$ A

 \implies Implies A = 2.8 mm

f = 75 Hz (found using a modulating laser)

If the amplitude doesn't increase, at v = 20 m/s, we expect only 6% error.

Estimation of error due to wire vibrations

Cornell Laboratory for

Education (CLASSE)

Accelerator-based Sciences and

Viewscreen = 0.72 mmWire scanner = $0.86 \pm 0.22 \text{ mm}$ (25% error) A $\omega = 0.25 \text{ x} 5 \text{ m/s} = 1.25 \text{ m/s}$

Wire separation = $11 \pm 4 \text{ mm}$ (36% error) Separation error = $4 \text{ mm} = \sqrt{2} \text{ A}$

 \implies Implies A = 2.8 mm

f = 75 Hz (found using a modulating laser)

If the amplitude doesn't increase, at v = 20 m/s, we expect only 6% error.

At 20 m/s it works great! Comparisons with viewscreens at low beam current (~100 nA)

It works!

Vertical beam profile measurements taken at Cornell's ERL Photoinjector

Parameter	Used for experiments
Beam type	Electron
Energy	4 MeV
Power	0.5 MW
Current	< 35 mA
Bunch Charge	< 27 pC
Repetition rate	1.3 GHz / 50 MHz
Emittance	0.3 μm
Trans. Beam Size	~ 3 mm

Signal (arb. units)

Note: Each (normalized) curve is presented on the same plot only for easy comparison.

Take home messages

- Great option for high current/intensity beams
 It works!
 - Compact (~40 cm)
 - Cheap (< \$5000)
 - Quick to build (only 2 custom parts)

Thank you for listening!

Check out the publication for more info: T. Moore "A Fast Wire Scanner for Intense Electron Beams" Phys. Rev. ST Accel. Beams 17, 022801 http://journals.aps.org/prstab/abstract/10.1103/PhysRevSTAB.17.022801

Thanks to Tobey Moore, our vacuum technician, for inventing this great design. And reminding us to keep it simple!

And thanks to the rest of the Cornell team: Nick Agladze Ivan Bazarov Adam Bartnik John Dobbins Bruce Dunham Yulin Li Jim Savino Karl Smolenski

Contact: Steve Full at <u>sf345@cornell.edu</u> This work was supported by the financial assistance from the National Science Foundation (Grant No. DMR-0807731).