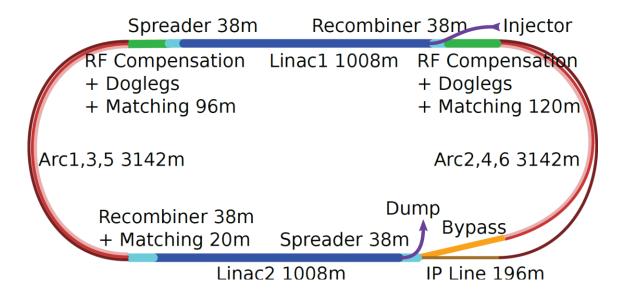
Dario Pellegrini on behalf of Alessandra Valloni

CERN SC RF AND ERL TEST FACILITY PLANS

ERL 2015 Workshop on Energy Recovery Linacs

on Energy Recovery Linacs



Electron-Hadron collisions at CERN

The **LHeC** is an accelerator study for a possible upgrade of the existing LHC

By adding a new electron accelerator, the LHeC would enable the investigation of electronproton collisions at unprecedented high energies and rate.

The baseline design consists of a 3-pass ERL to provide a 60 GeV, high-current e-beam

In parallel a design study for an ERL test platform is being pursued at CERN to test machine and operation issues before designing a large scale facility

LHeC ERL Facility & SC RF

FUNDAMENTAL MOTIVATION:

Proof validity of fundamental design choices:

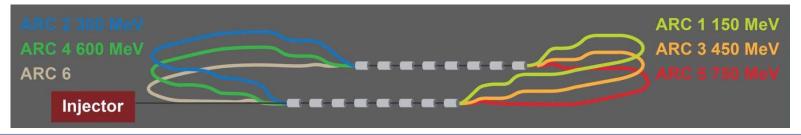
Three-turns acceleration + three-turns deceleration (other existing ERLs have only two passages)

Implications of high current operation (6 * 10mA > 60mA in the linacs!)

- Build up expertise for a facility with a fundamentally new operation mode: ERLs are circular machines with tolerances and timing requirements similar to linear accelerators (no 'automatic' longitudinal phase stability, etc.)
- Verify and test components and operation tolerances before building a large scale facility:

Tolerances in terms of field quality of the arc magnets Required RF phase stability (RF power) and LLRF requirements

Goals of the ERL Facility


Dedicated Accelerator physics studies and R&D:

- Injector studies
- Beam diagnostics developments and testing with beam
- Could it be foreseen as the injector to LHeC ERL and to FCC?

Scientific and technical applications:

- Possible use for detector development
- Controlled quench and damage test for SC magnets
- Generation of gamma-ray beams via Compton backscattering

TARGET PARAMETER*	VALUE	*in few stages
Injection Energy [MeV]	5	
Final Beam Energy [MeV]	900	
Normalized emittance γε _{x,y} [μm]	5	
Delivered Beam Current [mA]	10	
Bunch Spacing [ns]	25 (50)	
Passes	3	

Outline

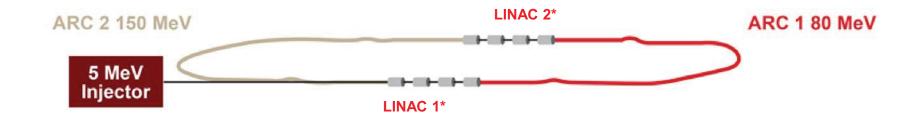
1. DESIGN STAGES AND PARAMETERS

2. MACHINE DESIGN

3. SC RF

4. PLANNING AND TIMELINE

Planning for each stage

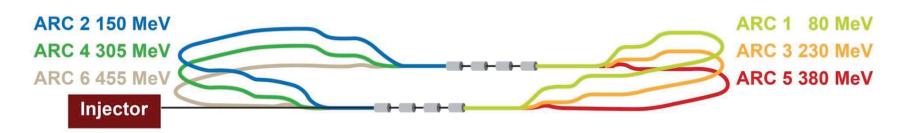

STEP 1

SC RF cavities, modules and e⁻ source tests

- Injection at 5 MeV
- 1 turn
- 75 MeV/linac
- Final energy 150 MeV

ARC	ENERGY
ARC 1	80 MeV
ARC 2	155 MeV

Two cryomodules with 4 SRF 5-cell cavities at 801.58 MHz. Clear path already established in collaboration with JLab to obtain a prototype.


Planning for each stage

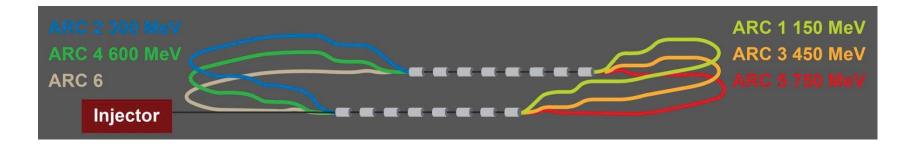
STEP 2

Test the machine in Energy Recovery Mode

- Injection at 5 MeV
- 3 turns
- 75 MeV/linac
- Final energy 450 MeV

ARC	ENERGY
ARC 1	80 MeV
ARC 2	155 MeV
ARC 3	230 MeV
ARC 4	305 MeV
ARC 5	380 MeV
ARC 6	455 MeV

Recirculation realized with vertically stacked recirculation passes


Planning for each stage

STEP 3

Additional SC RF modules test Full energy test in Energy Recovery Mode

- Injection at 5 MeV
- 3 turns
- 150 MeV/linac
- Final energy 900 MeV

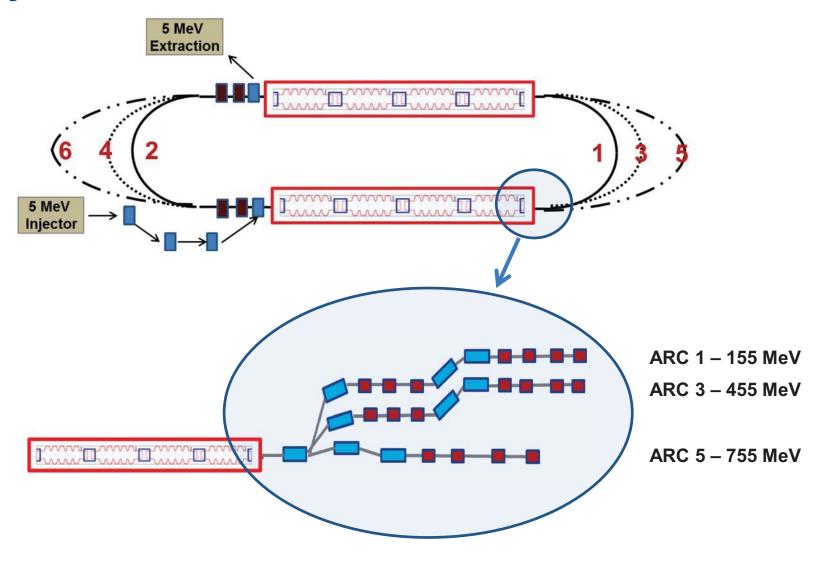
ENERGY
150 MeV
300 MeV
450 MeV
600 MeV
750 MeV
900 MeV

Outline

1. DESIGN STAGES AND PARAMETERS

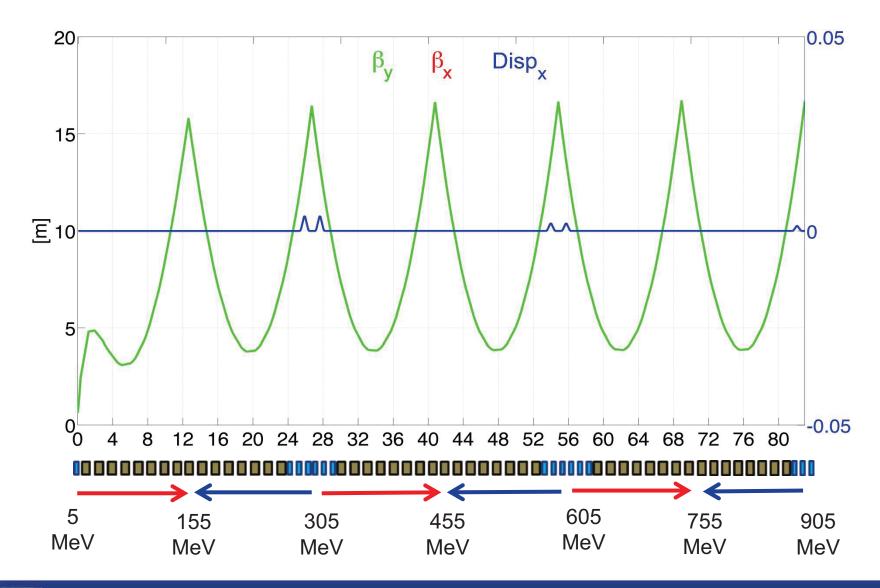
2. MACHINE DESIGN: LAYOUT AND OPTICS

MAGNET INVENTORY

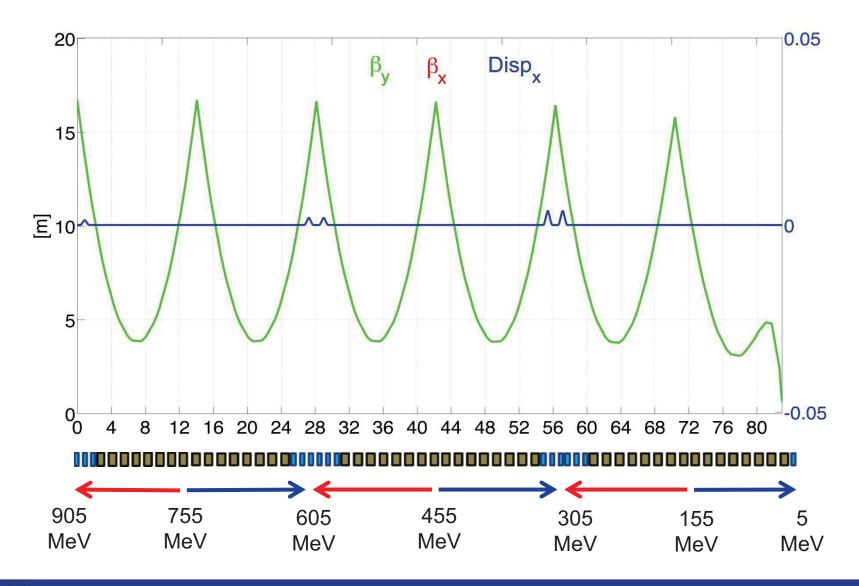

TRACKING SIMULATIONS

3. SC RF

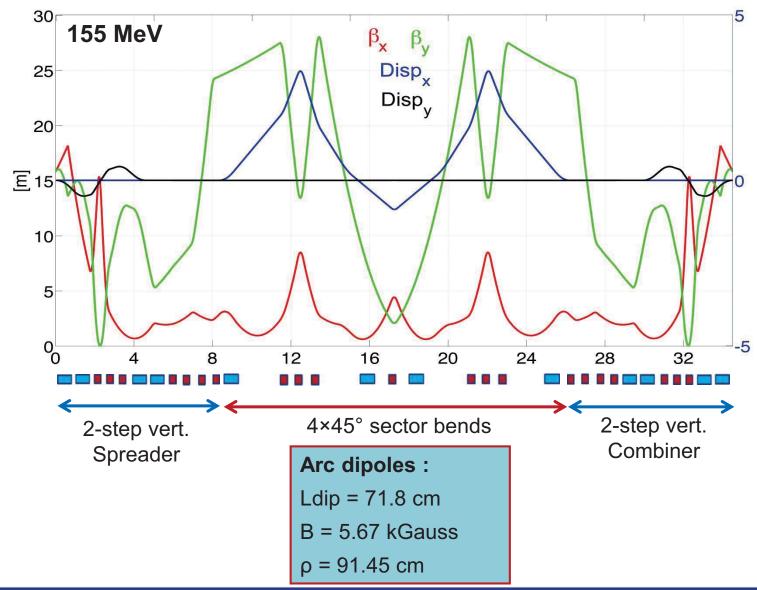
4. PLANNING AND TIMELINE



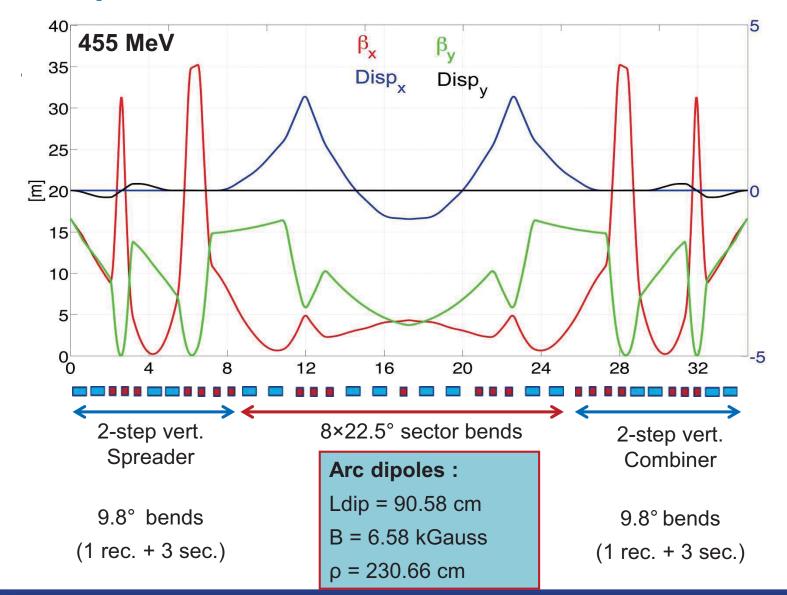
Layout



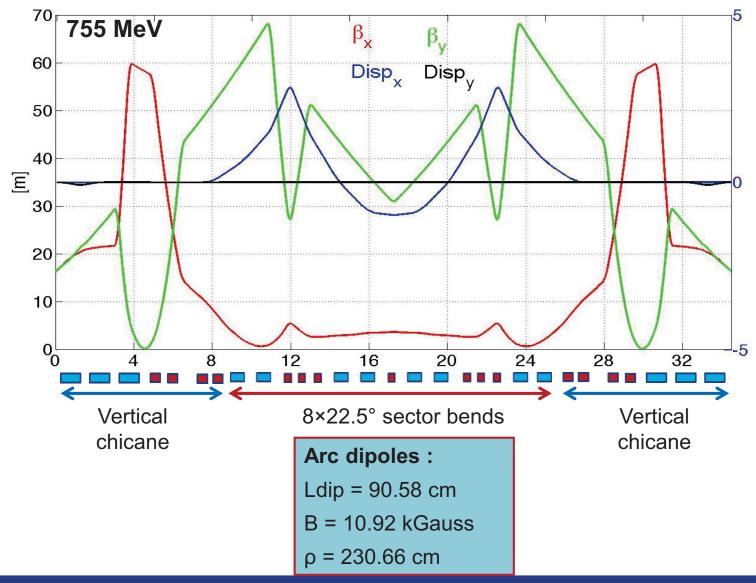
Linac 1 Multi-Pass Optics



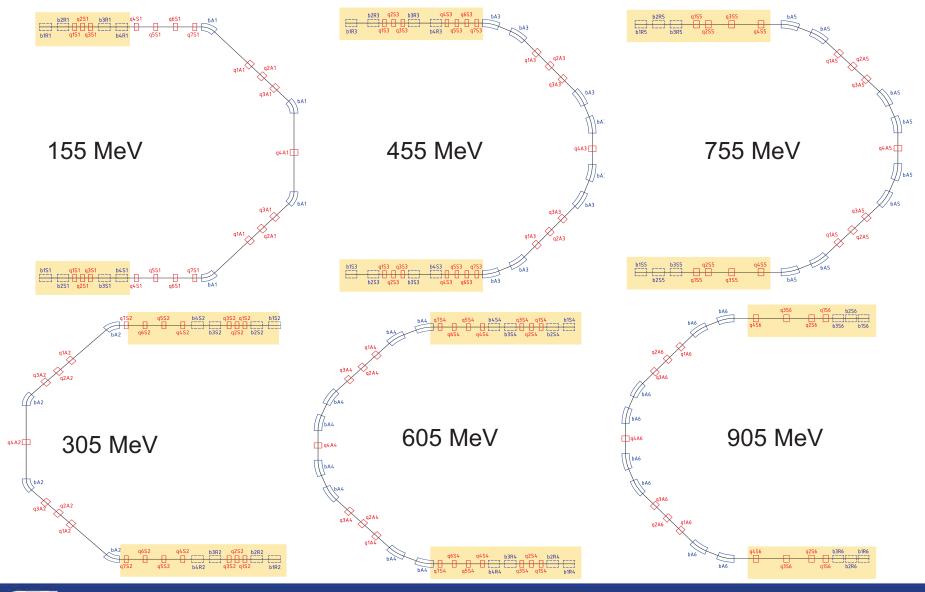
Linac 2 Multi-Pass Optics



Arc 1 optics



Arc 3 optics


Arc 5 optics

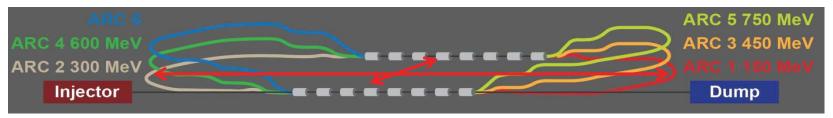
A. Valloni, A. Bogacz

Magnets inventory

A. Milanese

Summary of magnets inventory

A preliminary inventory of the magnets of the ERL Facility lists:


- 40 bending magnets (vertical field)
- 36 bending magnets (horizontal field) in the spreaders / combiners
- 114 quadrupole magnets
- a few magnets in the injection / extraction parts

Conventional iron-dominated resistive magnets can be used

ARC	ENERGY	LENGTH	# QUADS	# DIPOLES
ARC 1	150 MeV	35.98 m	21	12
ARC 2	300 MeV	35.74 m	21	12
ARC 3	450 MeV	35.61 m	21	14
ARC 4	600 MeV	35.74 m	21	14
ARC 5	750 MeV	35.98 m	15	12
ARC 6	900 MeV	34.43 m	15	12
TOTAL		297.9 m	114	76

Footprint

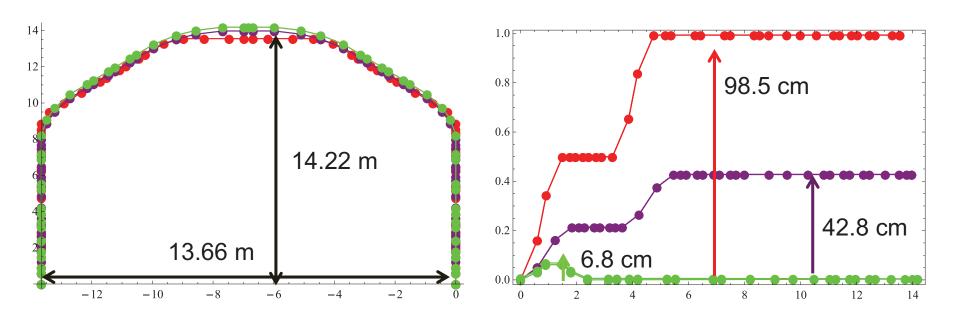
ARCS

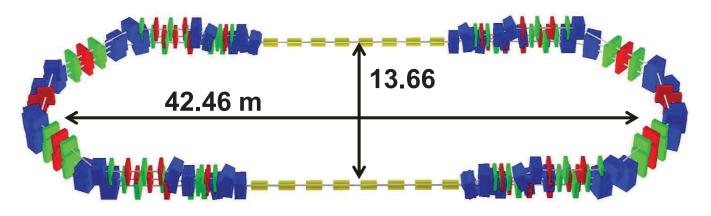
Total length for Pass 1 99.86 m $267 \times \lambda rf = 20*n* \lambda rf + 7*\lambda rf$

Total length for Pass 2 99.48 m $266 \times \lambda rf = 20*n* \lambda rf +6*\lambda rf$

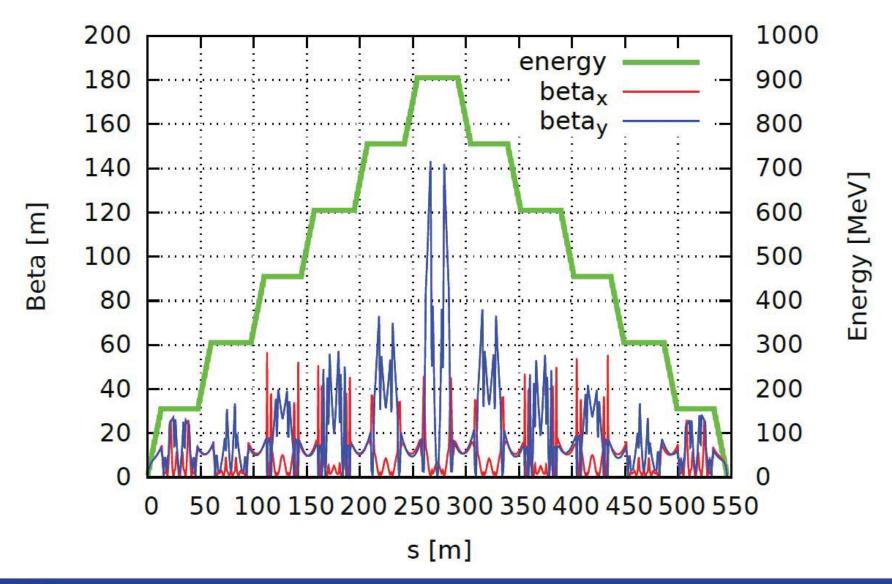
Total length for Pass 3 98.55 m $263.5 \times \lambda rf = 20*n* \lambda rf +3.5* \lambda rf$

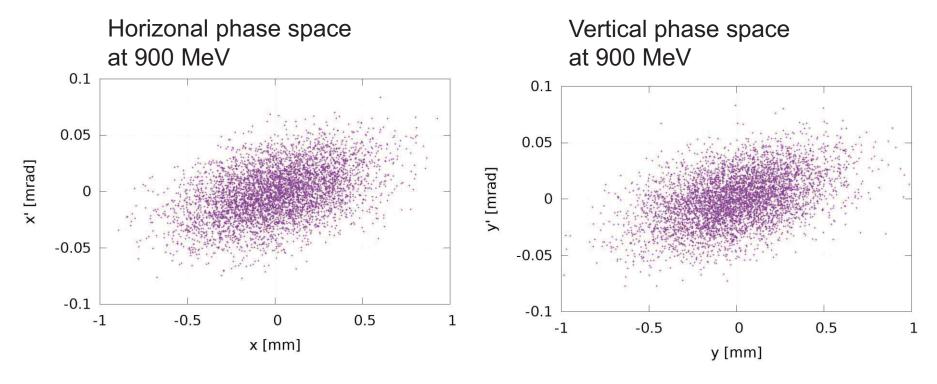
LINAC


ONE CRYOMODULE: 8 RF CAVITIES


Linac length ~ 12.6 m Chicane inj/extr length ~ 1.42 m F= 801.58 MHz λrf = 37.4 cm

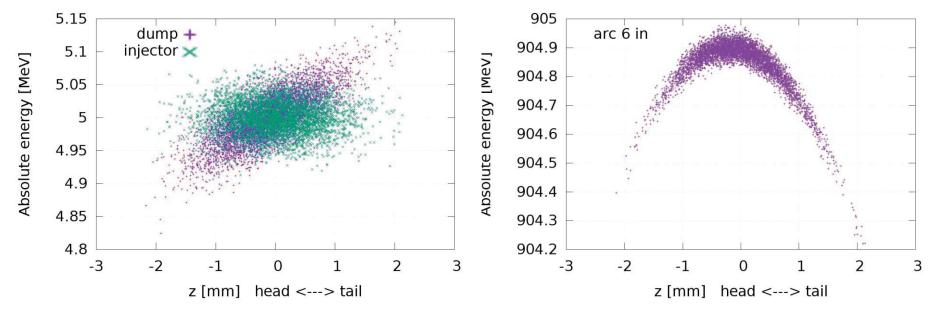
Total length for 3 passes 297.9 m


Arc layout



Start-to-end Optics with PLACET2*

Transverse Phase space at 900 MeV (PLACET2 – only optics)


Very well preserved phase space and transverse emittance at 900 MeV and down to the dump

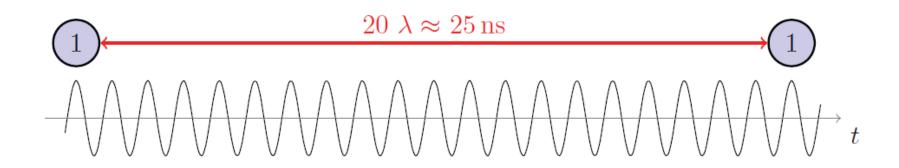
Small impact of (coherent) synchrotron radiation verified with Elegant Small impact of short-range wakefields expected (to be futher investigated)

D. Pellegrini

Longitudinal Phase Space (PLACET2 – only optics)

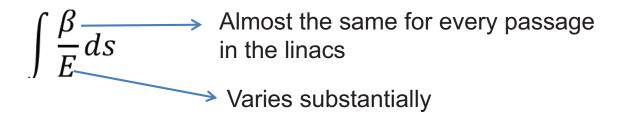
Bunch length preservation down to dump (very good isochronicity)
Some energy chirp at dump -> requires fine tuning of the arc lengths

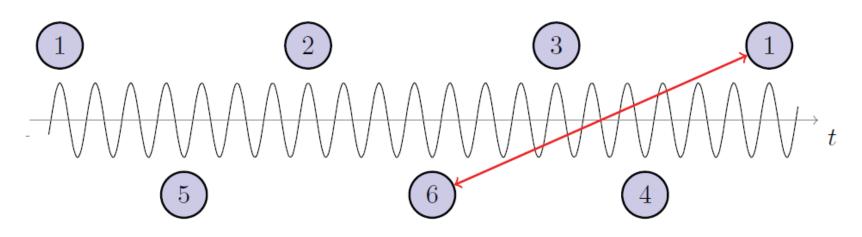
With 6 mm long bunches, the RF curvature can be seen at high energy, still extremely small energy spread: 5 ‰ at injector -> 0.1 ‰ at 900 MeV


Possibility to introduce enegy chirp and tune the arcs R_{56} to manipulate the phase space

Recombination Pattern

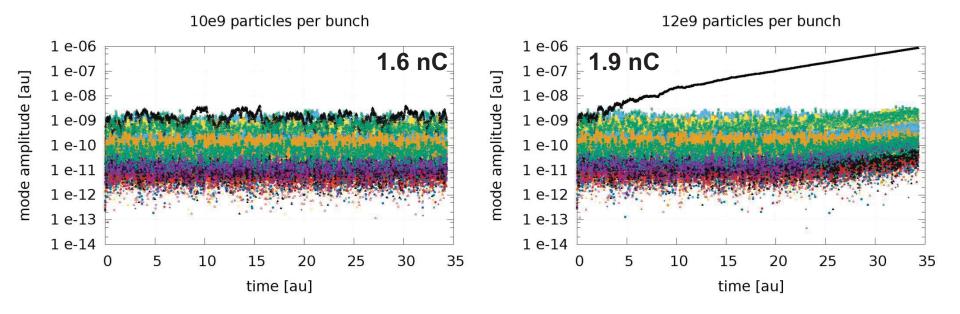
Multi-bunch effects are enhanced by the parameter:




The bucket filling at subsequent turns can be controlled tuning the length of the arcs

Recombination Pattern

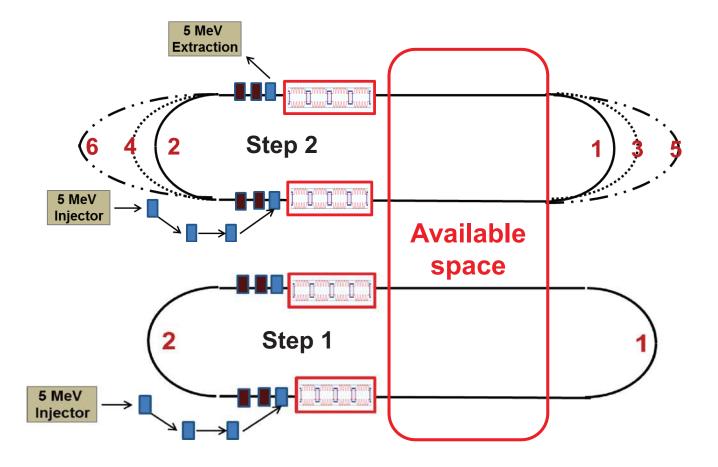
Multi-bunch effects are enhanced by the parameter:



Maximum separation between lowest energy passages minimizes the bunch cross-talk

Long Range Wakefields Threshold Current

Multi-bunch tracking simulations with PLACET2 and optimal recombination pattern 26 dipole modes of the SPL cavity scaled to 802 MHz 100 particles per bunch – BBU triggered by statistical fluctuations of the centroid


Offending mode builds up in the vertical plane (coupling between a specific mode frequency, time of flight and the vertical betatron tune)

Threshold current >5 times higher than the nominal (2e9 particles per bunch)

Optics for steps 1 and 2

Complete Step 2 and Step 1 configuration and optics layout

A. Valloni, A. Bogacz

Outline

1. DESIGN STAGES AND PARAMETERS

2. MACHINE DESIGN

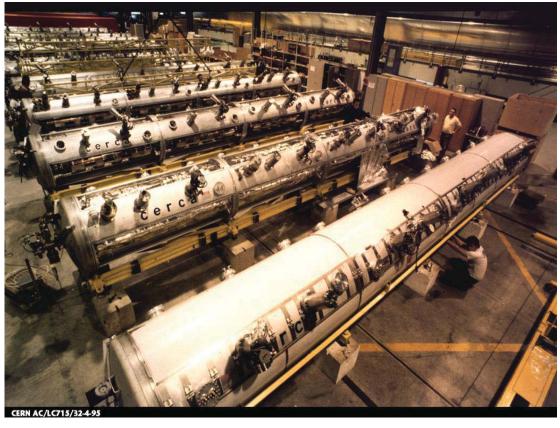
3. SC RF

4. PLANNING AND TIMELINE

Superconducting RF

CERN needs to study and develop the technologies to prepare for a possible next energy-frontier machine (European Strategy for Particle Physics)

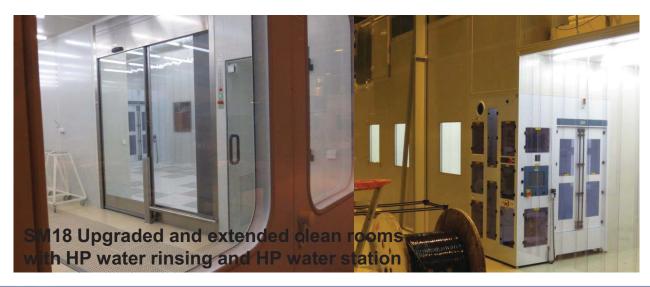
Superconducting RF is a key area – this is where this planned facility comes in

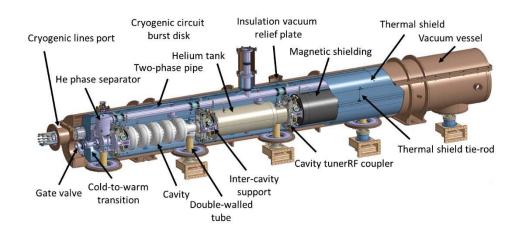

CERN management has asked us to conduct a **Conceptual Design Study** for an Energy Recovery Linac Facility (ERLF)

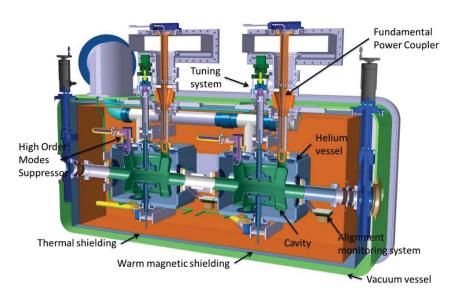
We have started this study and have started to establish collaborations

... in the nineties (LEP)

At LEP II times, CERN had the largest SRF installation


...today (1/2)





...today (2/2)

SPL cryomodule
Frequency = 704 MHz
Novel cavity suspension by FPC
cavities in bulk Nb

HL-LHC crab cavities, Frequency = 400 MHz, 2-cavity prototype CM cavities in bulk Nb (fabricated at Niowave)

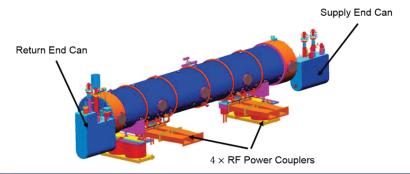
The CERN SRF R&D has to cover many areas, accelerators, technologies. Where possible, choices were made to exploit synergies!


PROGRAMME	FREQUENCY	TECHNOLOGY
LHC, spare and more	400 MHz	Nb on Cu
LHC upgrade	800 MHz	Nb on Cu? Bulk?
HIE-ISOLDE	101 MHz	Nb on Cu
CRAB	400 MHz	Bulk Nb
SPL (ESS)	704 MHz	Bulk Nb
ERL-Facility, FCC-he	800 MHz	Bulk Nb
FCC-ee, FCC-hh	400 & 800 MHz	Nb on Cu & bulk

SCRF @ the ERL FACILITY

PARAMETER	VALUE
RF frequency	801.58 MHz
Acc. Voltage/cavity	18.7
# Cells/cavity	5
Cavity length	~ 1.2 m
# Cavities/cryomodule	4
RF power/cryomodule	< 50 MW
# Cryomodules	4
Acceleration/pass	300 MeV
Bunch repetition	40 MHz
Duty factor	CW

Initial Cavity Design (SPL, JLAB and BNL experience)



Possibility to install and test cavities at other European frequencies (ESS, SPL,...), (LHC harmonic, SPS, LHeC, FCC,...) (XFEL, ILC) if:

- Photocathode pulsing at a sub-harmonic (12.16 MHz)
- Tunable arc length (10 cm) to match the phase

Cryomodule Design

JLAB had designed an 805 MHz cryomodule for SNS (concept for the 801.58 MHz baseline design)

Established collaboration with JLab taking advantage of their experience with CEBAF and the FEL in ERL mode:

- crucial contributions already obtained for the machine layout and lattice
- design and construct the 801.58 MHz cavities and cryomodules.

Outline

1. DESIGN STAGES AND PARAMETERS

2. MACHINE DESIGN

3. SC RF

4. PLANNING AND TIMELINE

ERL Facility at CERN for Applications

- Facility for testing quench and damage levels of SC wires and SC magnets
 - Intensities and repetition rates
 - Space, powering and other requirements
- Generation of high-energy monochromatic polarized photons via Compton backscattering of laser light from relativistic electrons for nuclear physics research
 - > Investigate the maximum energy and flux of the gamma-beam generated
 - Define the laser requirements according to the electron beam parameters

ERL facility at CERN for applications, Erk Jensen

WG5 Session 1: ERL Applications Wednesday June 10, 9:50 am

Possible Site options

Many site possibilities presented @ January 2014 LHeC Workshop

Three main options:

- Point 2 @ ALICE apparently hosting power converters (tbc)
- SM18 existing cryogenic and powering infrastructure, but no available space
- Prevessin site still under investigation

Site specific studies are foreseen for the ERL TF and auxiliary applications in preparation for the ERL TF CDR

37

Planning for the CDR

Draft a preliminary version by the end of June 2015:

To be presented at the next **LHeC Workshop***

CERN (24 June) and Chavannes-de-Bogis (25-26 June)

Organization committee:

S. Bertolucci, F. Bordry, O. Bruning, L. Hemery, M. Klein

Complete CDR by the end of 2015

LHeC Workshop

International Advisory Committee:

Guido Altarelli (Rome)

Sergio Bertolucci (CERN)

Nicola Bianchi (INFN Frascati)

Frederick Bordry (CERN)

Stan Brodsky (SLAC)

Hesheng Chen (IHEP Beijing)

Andrew Hutton (Jefferson Lab)

Young-Kee Kim (Chicago and Fermilab)

Victor A. Matveev (JINR Dubna)

Shin-Ichi Kurokawa (Tsukuba)

Leandro Nisati (Rome)

Leonid Rivkin (EPF Lausanne)

Herwig Schopper (CERN) - Chair

Jürgen Schukraft (CERN)

Achille Stocchi (LAL Orsay)

Working Group Convenors

Physics and Detector

Voica Radescu (Heidelberg)

Peter Kostka (Liverpool)

Accelerator and ERL Facility

Gianluigi Arduini (CERN)

Erk Jensen (CERN)

Summary

- An ERL platform is being pursued at CERN to validate the LHeC key design choices along with dedicated physical and technical applications
- > The concept of the ERL Facility is designed to allow for a staged construction with verifiable and useful stages for an ultimate beam energy in the order of 900 MeV
- An optics design study of the ERLF has been completed and start-to-end analysis are on going
- Design complementary to & synergetic with other proposals worldwide
- Collaborations with other institutes have been started
- Completion of Conceptual design study of an ERLF at CERN by 2015

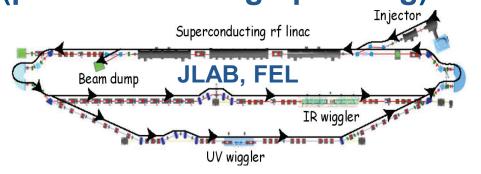
Thank you for your attention

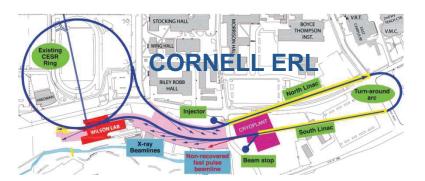
...and thanks to the LHeC collaboration, in particular to
A. Bogacz, O. Bruning, V. Chetvertkova, E. Jensen, M. Klein, D. Wollmann, F. Zomer

http://lhec.web.cern.ch

LHeC as an Higgs Factory: ultimate IP parameters

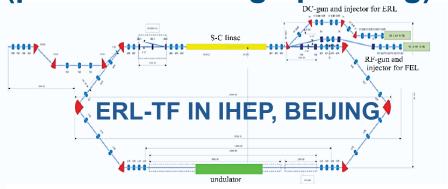
10 ³⁴ cm ⁻² s ⁻¹ Luminosity reach	PROTONS	ELECTRONS
Beam Energy [GeV]	7000	60
Luminosity [10 ³³ cm ⁻² s ⁻¹]	16	16
Normalized emittance γε _{x,y} [μm]	2.5	20
Beta Function β [*] _{x,y} [m]	0.05	0.10
rms Beam size σ [*] _{x,y} [μm]	4	4
rms Beam divergence σ΄ _{x,y} [μrad]	80	40
Average Beam Current [mA]	1112	25 delivered 150 in linacs
Bunch Spacing [ns]	25	25
Bunch Population	2.2*10 ¹¹	4*10 ⁹
Bunch charge [nC]	35	0.64


Review of some ERL-based machines worldwide (planned/existing/operating)



Beam Energy	88-165 MeV
Beam Current	10 mA
Bunch charge	135 pC
RF frequency	1500 MHz
Passes	1
Beam Energy	12-26 MeV
Bunch charge	40-60-200 pC
RF frequency	1300 MHz
Passes	1
Beam Energy	35-125-250 MeV
Beam Current	10mA (100mA)
Bunch charge	7.7pC- 77pC
RF frequency	1300 MHz
Passes	1- 2

Review of some ERL-based machines worldwide (planned/existing/operating)



Beam Energy	88-165 MeV
Beam Current	10 mA
Bunch charge	135 pC
RF frequency	1500 MHz
Passes	1
Beam Energy	5 GeV
Bunch charge	77 pC
Beam Current	100 mA
RF frequency	1300 MHz
Beam Energy	20 MeV
Bunch charge	0.5-5 nC
Bunch current	300 mA
RF frequency	704 MHz
Passes	1

Review of some ERL-based machines worldwide

(planned/existing/operating)

Beam Energy	35 MeV
Beam Current	10 mA
Bunch charge	77 pC
RF frequency	1300 MHz
Passes	1

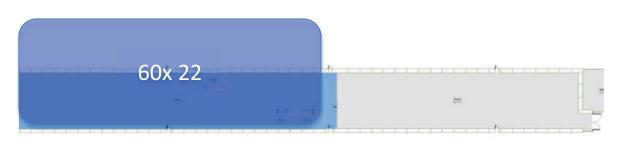
Beam Energy	50 MeV
Beam Current	100 mA
Bunch charge	77 pC
RF frequency	1300 MHz
Passes	1

Beam Energy	105 MeV
Bunch charge	0.77 pC
RF frequency	802/1300 MHz
Passes	2

Possible Site option: SM18

- Superconducting magnets and RF test facility.
 - Horizontal benches for SC magnets
 - Vertical cryostats for prototypes
 - RF powering and bunkers for RF SC cavities
- Cryogenics water power and other services already available.

- No space inside existing buildings.
- Adjacent positioning may interfere with SM18 activities.
- Parking space over the hill is not in use.
- South area less convenient as requires excavation
- All this possibilities are being discussed with the area managers


Prevessin Site Investigation

On the limit of the Prevessin site.

Constructed from shielding blocks, smaller than required but may be easily extended or rebuilt.

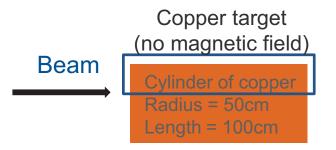
Some cryogenic infrastructure already available

Controlled quench and damage tests

MOTIVATION FACILITY FOR TESTING QUENCH AND DAMAGE LEVELS OF SC WIRES AND SC MAGNETS

Question:

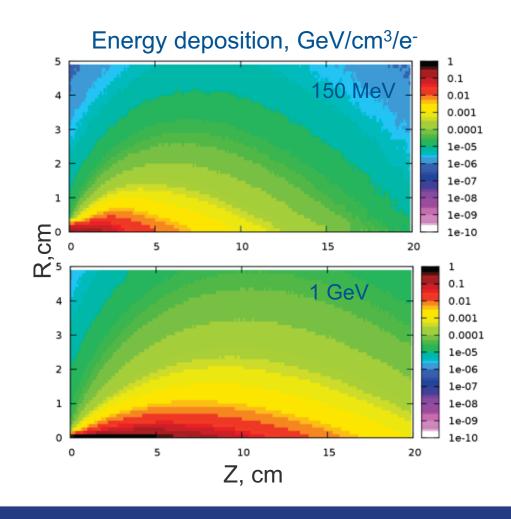
Are the intensities at extraction and repetition rates sufficient for the tests?


Requirements in terms of:

- Beam energy, intensity and pulse length (energy deposition)
- Space for the magnets installation (possible tests of cable samples and full cryo magnets)
- Cryo requirements
- Vacuum requirements
- Powering needs

Beam parameters to generate a given amount of energy deposition

CALCULATIONS AND FLUKA SIMULATIONS



Beam parameters

Energy, MeV	Emittance, m	Sigma, cm	FWHM, cm
150	1.70E-07	0.092	0.22
300	8.52E-08	0.065	0.15
450	5.68E-08	0.053	0.13
600	4.26E-08	0.046	0.11
750	3.41E-08	0.041	0.10
900	2.84E-08	0.038	0.09
1000	2.55E-08	0.036	0.08

Results are given for half of bulky target because of symmetry

Binning: 1 mm³ bins

Beam parameters to generate a given amount of energy deposition

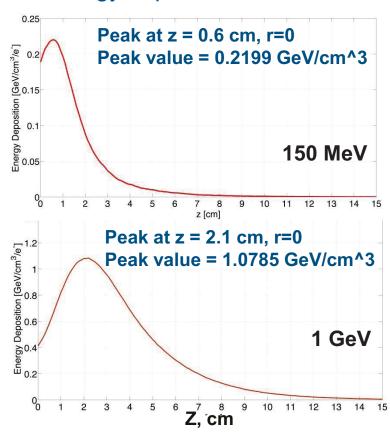
CALCULATIONS AND FLUKA SIMULATIONS

Beam

Copper target
(no magnetic field)

Cylinder of copper

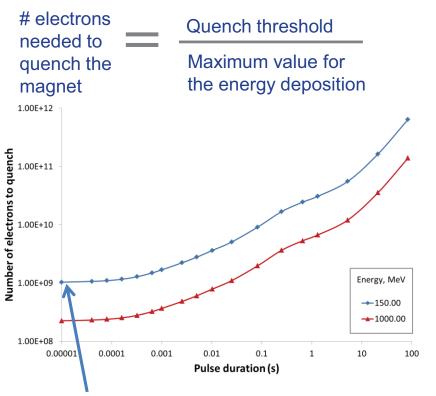
Radius = 50cm
Length = 100cm

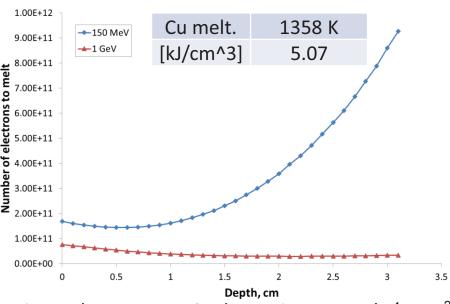

Beam parameters

Energy, MeV	Emittance, m	Sigma, cm	FWHM, cm
150	1.70E-07	0.092	0.22
300	8.52E-08	0.065	0.15
450	5.68E-08	0.053	0.13
600	4.26E-08	0.046	0.11
750	3.41E-08	0.041	0.10
900	2.84E-08	0.038	0.09
1000	2.55E-08	0.036	0.08

Results are given for half of bulky target because of symmetry

Binning: 1 mm³ bins

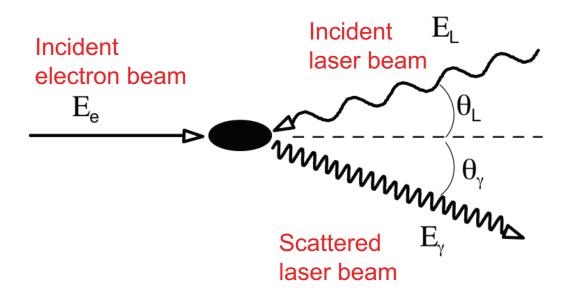

Energy deposition, GeV/cm³/e⁻


Quench & Damage

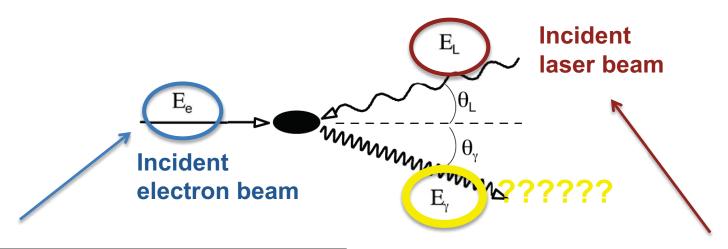
For **quenching** an LHC MB (main dipole magnet) a certain amount of energy should be deposited in 1mm³

Can easily quench with a single bunch at 150MeV Bunch charge 2e9 > quench threshold 1e9 **Damage** limit in present studies is defined as a number of electrons needed for melting 1 mm³ of Cu

Number of electrons for melting Cu should be delivered to the target within <u>several</u> <u>hundreds ms</u> in order to avoid heat transfer

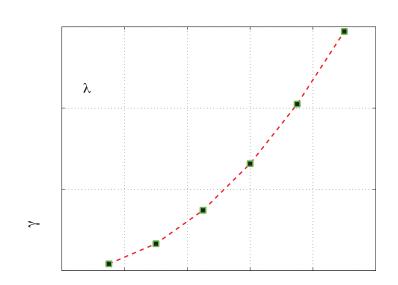


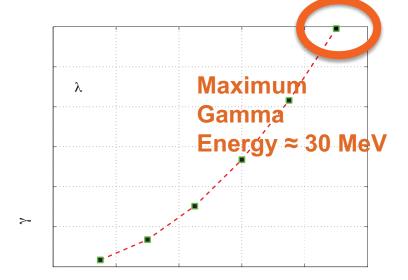
2e11 electrons required over 0.1 s to melt 1 mm³ 8e15 electrons accelerated over 0.1 s (can extract few bunches with a fast kicker)


Gamma beams at the ERL Facility

GOAL: Generation of high-energy monochromatic polarized photons via Compton backscattering of laser light from relativistic electrons for nuclear physics research

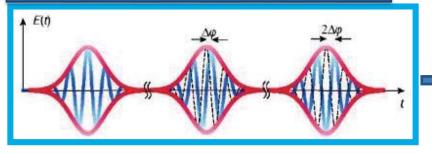
Gamma beams at the ERL Facility: input parameters



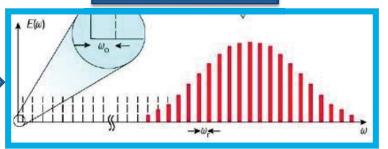

ELECTRON BEAM PARAMETERS		
Energy	900 MeV	
Charge	320 pC	
Bunch Spacing	25 ns	
Spot size	30 um	
Norm. Trans. Emittance	5 um	
Energy Spread	0.1 %	

LASER BEAM PARAMETERS		
Wavelength	515 nm - 1030 nm	
Average Power	300kW - 600 kW	
Pulse length	3 ps	
Pulse energy	7.5mJ - 15 mJ	
Spot size	30 um	
Bandwidth	0.02 %	
Repetition Rate	40 MHz	

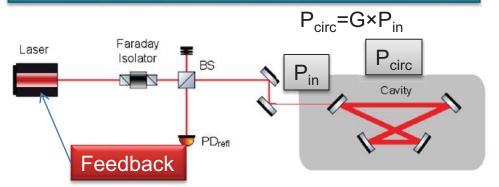
Gamma beam properties at the ERL facility



GAMMA BEAM PARAMETERS		
Energy	30 MeV	
Spectral density	9*10 ⁴ ph/s/eV	
Bandwidth	< 5%	
Flux within FWHM bdw	7*10 ¹⁰ ph/s	
ph/e- within FWHM bdw	10 ⁻⁶	
Peak Brilliance	3*10 ²¹ ph/s*mm ² *mrad ² 0.1%bdw	



Input laser beam



"frequency comb"

Four mirror cavity resonator:

Each tooth of the comb locked to a cavity mode

ThomX, LAL

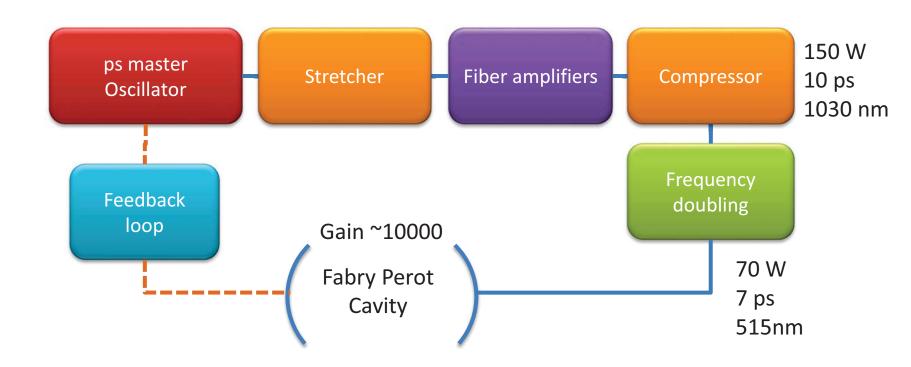
Niroirs1"

Rellow

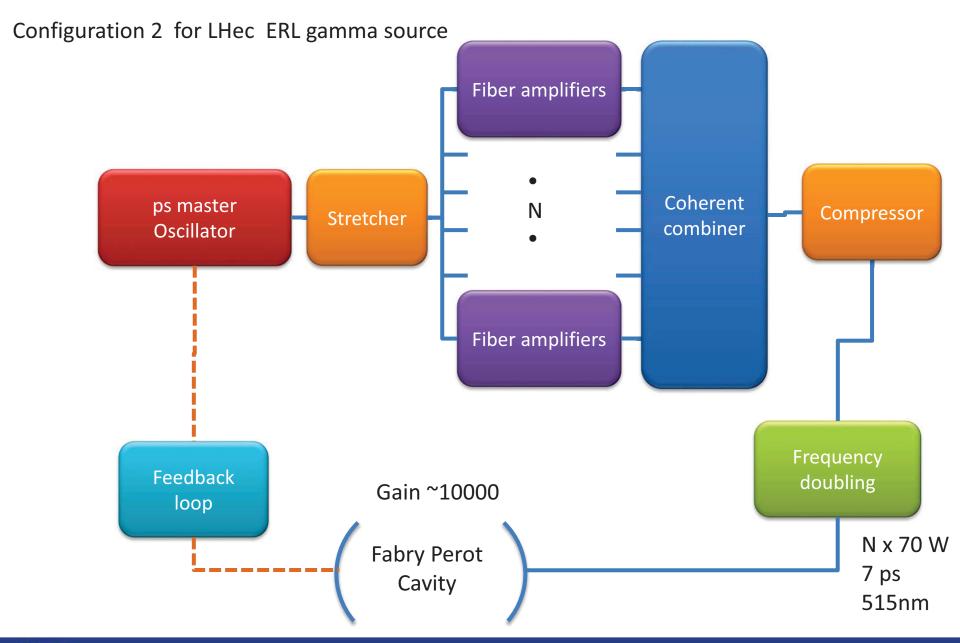
X-Ray

State of the art (average power/ ~10 ps pulses):

Pcirc~670kW for Pin=315W (250MHz; table top; Garching, OL39(2014)2595)


FT

Pcirc~50kW for Pin~<10W (178.5MHz;


gamma-ray exp. at ATF/KEK, CELIA/KEK/Hiroshima/LAL/LMA)

Configuration for LHec ERL gamma source:
 ~same as ThomX project (CELIA, LAL)
 R&D going on at LAL and CELIA Labs.

