

The Femto-Science Factory: A Multi-turn ERL Based Light Source

T. Atkinson*, A. Matveenko, A. Bondarenko, Y. Petenev

High brilliance

- at least a magnitude larger than 3rd generation storage rings (SR)
- Full transversal coherence
- transversal emittance at the diffraction limit $\lambda / 4\pi \rightarrow \lambda = 1$ Å
- High temporal resolution
- providing experiments with fs photon pulses
- Multiple beam energies
- flexible energies up to 6 GeV

CW operation ... **ERL** required!

• Split Linacs, multiple beam energies, large arcs and long undulator sections

• ASTRA and "SCO" used to optimize the injector + linac for minimal emittance

• Kapchinsky-Vladimirsky emittance compensation scheme possible on the "rotation" of the sliced phase ellipses *i*

$$x'' = -k_x x + \frac{j}{x+y}$$
$$y'' = -k_y y + \frac{j}{x+y}$$

14

16

• 1D CSR wakes in consecutive cells are identical ...

Pos	<i>€_{nx}</i> (mm mrad)	<i>€_{ny}</i> (mm mrad)	σ_t (ps)	σ_{E} (10 ⁻³)	Energy (MeV)
Input	0.13	0.09	3.09	2.93	50
1 st user station	0.14	0.08	2.13	0.21	1000
Undulator	0.20	0.08	2.13	0.18	6000
Final user station	0.28	0.09	2.13	0.66	1000
Dumpline	1.24	0.11	3.60	7.26 %	10

• Comparison with existing 3rd generation light sources

• RF curvature can alter the phase space distributions which varies the emittance. The optic can "correct" it !!!

R65, **T655** − linac phase + **T566** in arc → **FULL Long. Emitt RECOVERY**

SPM on Recovery

Chromatic correction scheme required due to high energy spread on recovery

$$T_{ijk}^{C} = \sum_{l}^{6} R_{il}^{B} T_{ljk}^{A} + \sum_{l}^{6} \sum_{m}^{6} T_{ilm}^{B} R_{lj}^{A} R_{mk}^{A}$$

$$\varepsilon_1^2 = (T_{161}T_{262} - T_{162}T_{261})^2 \left(\langle \delta_0^2 x_0^2 \rangle \langle \delta_0^2 x_0'^2 \rangle - \langle \delta_0^2 x_0 x_0' \rangle^2 \right)$$

_	Pos	ε _{nx} (mm mrad)	<i>€_{ny}</i> (mm mrad)	σ_t (fs)	(10^{-3})	Energy (MeV)
-	Input	0.11	0.06	1990.09	0.46	50
	Two stage injection	0.12	0.06	1281.99	0.57	240
	Low energy arcs	0.18	0.06	7.39	0.71	2000
	High energy arcs	0.30	0.08	22.59	0.62	4000
-	Undulator	0.49	0.10	24.73	0.52	6000
-	High energy arcs	1.00	0.23	48.70	0.92	4000
	Low energy arcs	2.52	0.49	452.22	1.77	2000
	Two stage recovery	8.47	0.93	3924.42	6.34	240
_	Dumpline	32.88	0.64	4430.29	14.66%	10

Additional Boosters required to supplement the beams energy loss

CSR dominates the SPM \rightarrow E_{CSR} = 20 MeV on the acceleration side

Energy loss due to CSR*

• Comparison with existing 3rd generation light sources

Free Electron Laser Mode

• SPM beam parameters at the diffraction limit ...

 $\varepsilon_{\text{limit}} < rac{\lambda_{\text{ph}}}{4\pi}$

Energy (GeV)	$\epsilon_x \cdot 10^{-11}$ (m rad)	$arepsilon_y \cdot 10^{-11}$ (m rad)	σ_t (fs)	σ_{E} (10 ⁻³)	ε _{limit} · 10 ^{−11} (m rad)
1	4.65	2.73	185.0	1.68	59.7
2	3.70	1.65	11.45	0.68	14.9
3	3.70	1.16	25.03	1.00	6.63
4	4.18	0.92	31.27	0.71	3.73
5	4.12	0.76	32.05	0.66	2.39
6	4.26	0.97	31.71	0.65	1.66

is I_{peak} ~ 700 A enough for FEL ?

27

recurrent system, bunch is short induces a wake

$$\mathcal{W}_1 = q \frac{\omega R}{Q} e^{-\frac{\omega t_0}{2Q}} e^{-i(\omega t_0 + \delta \phi_1)}$$

• Multi-turns, off-crest split linacs and varying R56 used for SPM bunch compression

Single bunch model LBBU Threshold ~ **17 mA**

• Conceptual Design Report is finished and is being internally reviewed ...

Lots of publications LINAC12, IPAC13, ERL13, IPAC14

Special thanks again to A. Matveenko A. Bondarenko and Y. Petenev

• Instability can limit the maximum current ...

Wavelength of associated dipole mode

Magnetic optic can be used to manipulate these terms ...

Triplets in the linac increase threshold by a factor 3

Cavity specific values

Low Energy Optic "juggling"

Why E_{inj} = 230 MeV injection linac? Why E_{linac} = 960 MeV main linac?

BBU implies full energy injection is "best"

$$E_{ini} \rightarrow E_{final}$$
 then $E_{linac} \rightarrow 0$

we want N=6 TURNS !!!

but

$$I_b \propto \frac{1}{\sqrt{\sum_{m=1}^{2N-1} \sum_{n=m+1}^{2N} \frac{\beta_m \beta_n}{\gamma_m \gamma_n}}}$$

Searching for integer values for the energy in each turn $E_{final} = (1 + 2kN)(E_0 + E_{inj})$

• F – focusing and f defocusing "linacs + arcs" to maximize the "magnification" and remove the correlated energy spread

$$\begin{pmatrix} c\Delta t \\ \delta \end{pmatrix}_{1} = \begin{pmatrix} f/F & F-f \\ 0 & F/f \end{pmatrix} \begin{pmatrix} c\Delta t \\ \delta \end{pmatrix}_{0}$$

CSR Limitations

$$\Delta E_{\rm CSR} \sim q / (\sigma_t^2 - \sigma_0^2)^{2/3} \sim {\rm const}$$

$$5 [pC] = C_1 (9.6 [fs]^2 - \sigma_0^2)^{2/3}$$

$$3 [pC] = C_1 (7.6 [fs]^2 - \sigma_0^2)^{2/3}$$

• On passing through the cavity the electron bunch induces some voltage variation that is seen by the recirculating bunch

Importance \rightarrow Acts on the <u>fundamental</u> mode

$$I_{\text{th}} = \frac{2pc^2}{\rho Qe\omega R_{56}\sin(\omega T_0 + \phi)\cos\phi}$$

Single RLC cavity approximation

Can derive a "Stability Matrix^{*}" $Tr(M(t)) = \frac{q}{t_b}$ unstable exponential growth when Tr(M) > 0

$$\mathsf{Tr}(M(t)) = \frac{qR}{t_b Q} \left(\Re \frac{\partial \phi(t)}{\partial \mathcal{W}(t)} + \Im \frac{\partial \phi(t)}{\partial \mathcal{W}(t)} \right) - \frac{2}{Q}$$

recurrent system, bunch is short induces a wake

$$\mathcal{W}_1 = q \frac{\omega R}{Q} e^{-\frac{\omega t_0}{2Q}} e^{-i(\omega t_0 + \delta \phi_1)}$$

and traverses a ERL loop with longitudinal dispersion R56 can influence the phase deviation When R56 \rightarrow 0 I_{th} \rightarrow infinity

HZB Helmholtz Zentrum Berlin

