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Abstract 
It is known that microbunching instability (MBI) has 

been one of the most challenging issues with the design of 
magnetic compressor chicanes for FEL or linear colliders, 
as well as the transport lines for recirculating or energy 
recovery linac machines. To more accurately quantify 
MBI in a single-pass or few-passes system and for more 
complete analyses, we extend our previously developed 
linear Vlasov solver [1, 2] to incorporate more relevant 
impedance models, including transient and steady-state 
coherent synchrotron radiation (CSR) and longitudinal 
space charge (LSC) impedances. Then the linearized 
Vlasov equation is numerically solved for the 
microbunching gain amplification factor. With application 
of this code to two specially designed transport arcs and a 
circulator cooling ring design of MEIC at Jefferson Lab, 
the resultant gain functions and spectra are presented and 
some results are compared with particle tracking 
simulation. We also discuss some underlying physics with 
inclusion of these collective effects. It is anticipated this 
more complete analysis can further improve the 
understanding of the MBI mechanisms and shed light on 
how to suppress or compensate MBI effects in such lattice 
designs. 

INTRODUCTION 
The beam quality preservation is of a general concern 

in delivering a high-brightness beam through a transport 
line or recirculation arc in the design of modern 
accelerators. Microbunching instability (MBI) has been 
one of the most challenging issues associated with such 
beamline designs. Any source of beam performance 
limitations in such recirculation or transport arcs must be 
carefully examined in order to preserve the beam quality, 
such as the coherent synchrotron radiation (CSR), 
longitudinal space-charge (LSC) and/or other high-
frequency impedances that can drive microbunching 
instabilities. 

To accurately quantify the direct consequence of 
microbunching effect, i.e. the gain amplification factor G 
(which shall be defined later), we further extend our 
previously developed semi-analytical simulation code [1, 
2] to include more relevant impedance models, including 
both CSR and LSC impedances. The LSC effect stems 
from (upstream) non-uniformity of an electron beam and 
can accumulate an amount of energy modulation when a 
beam traverses a long section of a beamline. Such energy 

modulation can then convert to density modulation via 
momentum compaction R56 downstream the beamline. In 
addition, along the beamline, CSR due to electron 
radiation emission out of bending dipoles can have a 
significant effect on further amplifying such density to 
energy modulation. The accumulation and conversion 
between density and energy modulations can possibly 
cause serious microbunching gain amplification (or, 
microbunching instability). 

In this paper, we would first summarize the impedance 
models used in our semi-analytical simulations. Then, we 
briefly introduce the methods of microbunching gain 
calculation: a kinetic model based on (linearized) Vlasov 
equation [3, 4], including direct and iterative approaches, 
and particle tracking by ELEGANT [5, 6]. In the same 
section, we devise a method to quantify the contribution 
of microbunching gains from individual stages based on 
the concept proposed in Ref. [4]. After that, we illustrate 
the calculated gain functions and spectra for our example 
lattices, including two comparative high-energy transport 
arcs and a circulator cooling ring (CCR) design for 
Medium-energy Electron Ion Collider (MEIC) project at 
Jefferson Lab [7]. Finally we discuss the underlying 
physics and summarize our observations from the 
simulation results. We hope this further accurate and 
complete consideration of microbunching gain estimation 
can be compared with currently experimental 
investigation [8, 9] and help shed light on how to further 
improve future lattice designs. 

IMPEDANCE MODELS 
For a (ultra-)relativistic electron beam traversing an 

individual dipole, CSR can have both steady-state and 
transient effects. In addition, when a beam goes through a 
long transport line, LSC can also have a significant effect 
on accumulating energy modulations. Here we quote the 
resultant analytical expressions for CSR and LSC 
impedances without further derivation: 

 
Free-space Steady-state Non-ultrarelativistic 
CSR Impedance 

For a relativistic electron beam (β = 1, γ < ∞) traversing 
a bending dipole, the free-space steady-state CSR 
impedance per unit length can be expressed as [10]: 

        (1) 

____________________________________________  
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where x  k(s) (s) 2/3
 2 , k = 2π/λ is the modulation 

wave number, ρ(s) is the bending radius, and Ai and Bi 
are Airy functions. Under ultrarelativistic approximation (
   ), Eq. (1) is reduced to the well-known expression 

[11, 12]: 

ZCSR
s.s.UR k(s);s   ik(s)1/3 A

(s)
2/3

                                                 (2) 

where the constant A  2 Bi'(0) 3 iAi'(0)  . 
 
Entrance Transient CSR Impedance 

Prior to reaching steady-state interaction, the beam 
entering a bend from a straight section would experience 
the so-called entrance transient state, where the 
impedance per unit length can be obtained by Laplace 
transformation of the corresponding wakefield [13, 14, 
15]: 

ZCSR
ent k(s);s   4

s* e4 i (s ) 
4

3s* i(s) 1/3
1

3
,i(s)





           (3) 

where (s )  k (s )z
L

(s ), s* is the longitudinal coordinate 

measured from dipole entrance, zL  s* 3
24 2 , and Γ is 

the upper incomplete Gamma function. 
 
Exit Transient CSR Impedance 

There are also exit CSR transient effects as a beam exits 
from a dipole. For the case with fields generated from an 
upstream electron (at retarded time) propagating across 
the dipole to downstream straight section, i.e. Case C of 
Ref. [15], the corresponding impedance per unit length 
can be similarly obtained by Laplace transformation: 

ZCSR
exit k(s);s   4

Lb  2s* e
 ik (s )Lb

2

6  (s)
2 Lb3s*                                          (4) 

where s* is the longitudinal coordinate measured from 
dipole exit and Lb is the dipole length. 

For the impedance expression with the case of fields 
generated from an electron (at retarded time) within a 
dipole propagating downstream the straight section, we 
use the following expression for the exit transient 
impedance [16]: 

ZCSR
drif (k(s);s) 

2
s* ,  if  2/31/3  s*   2 2
2k (s )

 2 ,  if s*  2 2

0,  if s*  2/31/3










                             (5) 

where s* is the longitudinal coordinate measured from 
dipole exit. This expression assumes the exit impedance 
comes primarily from coherent edge radiation in the near-
field region (i.e. z < λγ2), and in our simulation we only 
include transient effects [Eq. (4) and (5)] right after a 
nearby upstream bend. Here we note that these CSR 
models are valid only when the wall shielding effect is 
negligible. The wall shielding effect becomes important 
when the distance from the beam orbit to the walls h is to 
satisfy h   2 1/3. 

Longitudinal Space Charge Impedances [17] 
Below we present two slightly different LSC 

impedance expressions implemented in our code. The first 
one is on-axis model, which assumes a transversely 
uniform density with circular cross section of radius rb, 

ZLSC
onaxis (k(s);s) 

4i

 rb (s)

1K1( )


                                        (6) 

where   k (s)rb (s )
  and the transverse beam sizes can be 

obtained by the fitted result rb (s)  1.747
2  x (s) y(s)  [18]. 

The second LSC model is the average model, which 
integrates the radial dependence [17,19], 

ZLSC
ave (k(s);s) 

4i

 rb (s)

1 2I1( )K1( )


                                       (7) 

where ξ is defined above the same way. 

NUMERICAL METHODS 
To quantify the MBI in a transport or recirculation arc, 

we estimate the microbunching amplification factor G (or, 
bunching factor) by two distinct methods. The first one, 
based on a kinetic model, is to solve a (linearized) Vlasov 
equation [3,4] using given impedance models [e.g. Eqs. 
(1-7)]. This method is of our primary focus in this paper. 
The second one, served as a benchmarking of the first 
method, is based on particle tracking (here we use 
ELEGANT [5,6]). For the former, after mathematical 
simplification of the linearized Vlsaov equation, we 
actually solve a general form of Volterra integral equation 
[3,4] in terms of the bunching factor. In our semi-
analytical code, to facilitate us in simulating ERL-based 
lattices which usually contain spreaders/recombiners, we 
extend the existing formulation [3,4] to include both 
transverse horizontal and vertical bends. Below 
summarizes the governing equation for bunching factor 
gk, 

gk (s)  gk
(0)(s) K(s, s ')gk (s ')ds '

0

s

                                      (8) 

where the kernel function can be particularly expressed as 

K(s, s ') 
ik


I (s)

IA

C(s ')R56 (s ' s)Z kC(s '), s '   [Landau damping]  (9) 

for the [Landau damping] term 

[Landau damping] exp
k2

2

 x0 x0R51
2 (s, s ')

R52
2 (s,s ')

x0







 y0 y0R53
2 (s,s ')

R54
2 (s,s ')

y0









2R56
2 (s,s ')













































(10) 

with  
R56 (s ' s)  R56 (s) R56 (s ') R51(s ')R52 (s) R51(s)R52 (s ')

R53(s ')R54 (s) R53(s)R54 (s ')
   (11) 

and R5i (s, s ')  C(s)R5 i (s)C(s ')R5i (s ')  for i = 1, 2, 3, 4, 6. 

 
Here the kernel function K(s,s’) describes relevant 

collective effects, gk(s) the resultant bunching factor as a 
function of the longitudinal position given a wavenumber 
k, and gk

(0)(s) is the bunching factor in the absence of 
collective effect (i.e. from pure optics effect). We 
particularly note that the above formulation can be 
applicable to the case with focusing in combined-function 
dipoles.  
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In the above formulation, we have made the coasting 
beam approximation, i.e. the modulation wavelength is 
assumed much shorter compared with the whole bunch 
duration. The transport functions R5i(s) (i = 1, 2, 3, 4, 6) 
are adopted from ELEGANT with slight modification to 
account for “non-ultrarelativistic” contribution
R56 (s) R56 (s) s

 2 where s is the longitudinal 

coordinate along the beamline.  Here we define the 
microbunching gain function at k = 2π/λ as 
G(s)  gk (s) gk

(0)(0)  
and the gain spectral function at the 

exit of a lattice as 
Gf ()  G(s  s f )                                                           (12) 

We note that the impedance term in Eq. (9) is of our 
primary interest. With given impedance models [Eqs. (1-
7)], we can estimate the microbunching gain through a 
beamline. Since the calculation is fast (compared with 
tracking simulation), it can be used to make quick 
estimation or optimize the microbunching gain 
development in a lattice design. 

For Eq. (8), we solve it by two approaches: one is the 
direct solution, and the other resorts to the iterative 
solution. For the latter approach, at the first step, we 
express Eq. (8) in vector forms for gk (s)  and gk

(0)(s), and 

in a matrix form for K(s, s '). Then we arrive at the 

following equation 

gk  IK 1
gk

(0)                                                        (13) 

provided the inverse matrix of IK   exists. 

At the second step, to introduce the stage gain concept, 
motivated by Ref. [4], we try to define the first-order 
iterative solution by expanding Eq. (13) as:
gk

(1)  IK gk
(0) and the second-order iteration to be

gk
(2)  IK K2 gk

(0) . In general, to nth order iterative 

solution, we have 

gk
(n)  Km

m0

n





gk
(0)                                                       (14) 

It can be seen that, in Eq. (14), the sum to infinite order 
should give an equivalent result of Eq. (13) [or, Eq. (8)], 
provided the sum converges. Therefore, these two 
approaches, Eq. (8) and Eq. (14), can be proven 
equivalent. Here we note that the convergence of Eq. (14) 
is held in a single-pass (or, finite-pass) system, e.g. the 
transport or recirculation arcs, for CSR effects. For a 
storage ring or for LSC effects which are ubiquitous along 
the beamline, the convergence would not be held, which 
is however beyond the scope of this paper [20]. For CSR-
induced microbunching gain, the advantage of using 
numerical iterative approach, Eq. (14), is that it can give 
us a further insight to see how different orders of iterative 
solutions contribute to the different physical amplification 
stages. Also, Eq. (14) facilitates us exploring up to which 
stage the overall CSR-induced microbunching 
development can be described, by comparing with the 
direct solution [1]. Hereafter we dub the solutions of Eq. 
(13) as direct solutions, and those of Eq. (14) as iterative 

solutions. Note that the definition of gain function with 
respect to Eq. (8) [i.e. Eq. (12)] can now be generalized to 
define the staged gain function, with respect to Eq. (14), 
as  with  and, 

similar to Eq. (12), the stage gain spectral function, 
Gf

(n)  G (n)(s  s f )                                                         (15) 

To further compare the CSR microbunching gains 
contributed from individual stages, we devise in this 
subsection a method to quantitatively characterize the 
microbunching amplification in terms of stage orders. We 
note that Eq. (15) can in general be expanded in a series 
of polynomial of the beam current as [see also Eq. (14) 
and (9)] 

    (16) 

up to a certain order M. 
 

In order to extract the net effects caused by the lattice 
optics and beam phase space spreads for Landau damping, 
the above expression Eq. (16), together with knowledge 
of Eq. (9), can be further formulated as 

                                                (17) 

where A is defined in Eq. (2), γ is the relativistic factor 
and dm

( )  is the dimensionless coefficient (given a certain 

modulation wavelength) which now reflects the properties 
from lattice optics at mth stage (m = 0, 1, 2,…), as well as 
Landau damping through finite beam emittances and 
energy spread [see Eqs. (10)]. For our interest in the 
following discussion, λ is chosen to correspond to the 
maximal CSR gain, denoted as opt

. Here we point out 

that Eq. (38) of Ref. [4] can be a special case of Eq. (17) 
for M = 2 in a typical bunch compressor chicane. 

Obtaining the coefficients dm
( ) of Eq. (17) can be 

straightforward. Here we remark the close connection 
between Eq. (9) and Eqs. (14, 15). For now, we can define 
the individual stage gain, which shall be convenient for 
our further discussion, 

                                                      (18) 

Note the difference between Eq. (17) and (18). 
As our second model to calculate the microbunching 

gains, we use ELEGANT [5,6], based on the particle 
tracking, as our benchmarking against the results by our 
semi-analytical Vlasov solver for the following example 
lattices. 

SIMULATION RESULTS 

High-energy Transport Arcs (Example 1 and 2) 
In this section we take two 1.3 GeV high-energy 

transport arcs as our comparative examples (hereafter 
dubbed Example 1 and Example 2 lattice). The detailed 
description of the two example lattices can be found in 
Ref. [21, 22]. Table 1 summarizes some initial beam 
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parameters for use in our simulations. Here, Example 1 
lattice is a 180° arc with large momentum compaction 
(R56), as well as a second-order achromat and being 
globally isochronous with a large dispersion modulation 
across the entire arc. In contrast to the first example, 
Example 2 is again a 180° arc with however small 
momentum compaction. This arc is also a second-order 
achromat but designed to be a locally isochronous lattice 
within superperiods. Local isochronisity ensures that the 
bunch length is kept the same at phase homologous CSR 
emission sites. The lattice design strategy was originally 
aimed for CSR-induced beam emittance suppression, 
while our simulation results show that it appears to work 
for microbunching gain suppression as well. Figure 1 
shows the Twiss functions and transport functions R56(s) 
(or, the momentum compaction functions) across the arcs. 
Note that R56(s) for Example 2 (Fig. 1d) is much smaller 
in amplitude than that for Example 1 (Fig.1c) due to local 
isochronicity. 

 
Table 1: Initial Beam and Twiss Parameters for the Two 
High-energy Transport Arcs 

Name Example 1 

(large R56) 

Example 2 

(small R56) 

Unit 

Beam energy 1.3 1.3 GeV 

Bunch current 65.5 65.5 A 

Normalized 
emittance 

0.3 0.3 μm 

Initial beta 
function 

35.81 65.0 m 

Initial alpha 
function 

0 0  

Energy spread 
(uncorrelated) 

1.23×10-5 1.23×10-5  

 

Figure 1: Lattice and transport functions for 1.3 GeV 
high-energy transport arc: (a)(c) with large momentum 
compaction function R56 (Example 1); (b)(d) with small 
momentum compaction function R56 (Example 2). 

 
Microbunching gains for the two transport arcs are 

shown in Figs. 2 and 3. Figure 2 shows the gain spectra 
Gf(λ) at the exits of the lattices as a function of 

modulation wavelength, from which one can obviously 
see a significant difference between them: Example 1 is 
vulnerable to CSR effect while Example 2 is still laid a 
very low level. 

One can observe that microbunching gain with the 
inclusion of both steady-state CSR and entrance transient 
effects is slightly lowered from the case of steady-state 
CSR alone. This is because the CSR impedances 
including entrance transient effect become a bit reduced 
near a dipole entrance where the beam enters a bend. One 
can also observe that, with the inclusion of all relevant 
CSR impedances, including exit transients, the 
microbunching gain increases up to 200 % compared with 
that of steady-state case. It can be also expected that the 
additional inclusion of LSC can further degrade the 
longitudinal beam quality. Note that, for this lattice 
(Example 1), all the dipoles only occupy less than 5% of 
total beamline length, so without optical compensation the 
CSR-drift transient can cause a further significant effect. 
Yet with optical compensation, even with the same ratio 
of dipoles over the beamline, Example 2 is not subject to 
CSR-induced MBI. This highlights the impact of lattice 
design for transport or recirculation arcs on 
microbunching gain. We remind that, due to extremely 
high gain of Example 1 lattice with inclusion of all 
relevant CSR impedances, those ELEGANT results are 
averaged over the initial amplitudes 0.01-0.04% and 
70×106 macroparticles are used in the simulation with 
extensive convergence studies done before ELEGANT 
production [23]. 

 

 

 

Figure 2: Microbunching gain spectra as a function of 
initial modulation wavelength for Example 1 (top) and 
Example 2 (bottom) lattice. Here, for ELEGANT tracking 
of Example 1, we vary the initial density modulation 
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amplitudes from 0.04 % to 0.1 % for various modulation 
wavelengths in order to obtain the converged results. 

 
Figure 3 demonstrates the evolution of microbunching 

gains as a function of s for several different combination 
of impedances at optimal wavelengths (λopt = 40 μm for 
Example 1; λopt = 20 μm for Example 2). One can see in 
Fig. 3, with inclusion of CSR drift, the gain greatly 
accumulates at the second half of Example 1, while 
Example 2 (with local isochronicity) is free from the gain 
amplification. With further inclusion of LSC, the gain 
increases more, but primary contribution to the overall 
gain comes from CSR effect. 

 

 

Figure 3: Microbunching gain functions G(s) for Example 
1 (top) and Example 2 (bottom) lattice. Note here that we 
impose an initial density modulation amplitude 0.05 % on 
a flattop density distribution in ELEGANT simulations 
for Example 1. 

 
To further examine the features of multi-stage gain 

amplification, we continue to take the two high-energy 
transport arcs (Example 1 and 2) as examples to extract 
the coefficients dm

( )  [defined in Eq. (17)] so that we can 

quantify and compare optics impacts on the CSR 
microbunching gains (for simplicity, here we consider 
only steady-state CSR effect). Provided a set of dm

( ) are 

given for different stages (i.e. different m), Fig. 4 shows 
the bar charts representing the individual staged gains 

as functions of beam current and stage index for both 

Examples. Here we have two observations in Fig. 4: first, 
given a specific stage index, as the beam current 
increases, also increases; second, for the same beam 

current, as the stage order increases, does not 

necessarily increase accordingly. This is because the stage 
gain coefficient’s behavior is lattice dependent. Since 

dm
( ) are independent of beam current and beam energy, 

they can be used to obtain the maximal gain as a function 
of the beam current provided dm

( ) are given. Figure 5 

compares the overall gain from Eq. (17) and Eq. (12) for 
different currents for Example 1 and 2, at a selected 
wavelength close to maximal gain. As can be seen, M = 6 
can well describe the current dependence of the CSR 
microbunching gain in Example 1 lattice. For Example 2 
case, the nominal beam current (65.5 A) is well described 
by M = 6; however, if at further high current scale, it 
needs to take higher stage orders into account. 

 

 

Figure 4: Bar chart representation of the individual staged 
gains [Eq. (18)] at the exits of the Example 1 and 2 
lattices for several different beam currents. (Left) 
Example 1 (λ = 36.82 μm); (right) Example 2 (λ = 19 μm). 

 

 

Figure 5: Current dependence of maximal CSR gain for 
the two high-energy transport arc lattices: (a) Example 1; 
(b) Example 2. Solid red line from Eq. (12) with M = 6, 
solid green line from Eq. (12) with M = 9 and blue square 
dots from Eq. (17). 
 

To further illustrate how the multi-stage amplification 
physically contributes to and how the lattice optics 
impacts on the microbunching development, we create in 
Fig. 6 the “quilt” patterns R56 s ' s   [defined in Eq. 

(11)] for the two example lattices in order to clearly 
identify the enhancement or suppression of 
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microbunching along the beamline by lattice optics. For a 
planar and uncoupled lattice, Eq. (11) is reduced back to 
R56 (s ' s)  R56 (s) R56 (s ') R51(s ')R52 (s) R51(s)R52 (s ') . 

The upper left area in the figures vanishes due to 
causality. It is obvious that in Example 1 (left figure) 
those block areas with large amplitude, particularly the 
bottom right deep red blocks, can potentially accumulate 
the CSR gain. To be specific, for Example 1, energy 
modulation at s’ = 15 m can cause density modulation at s 
= 60 m, where CSR can induce further energy modulation 
at the same location. Then such modulation propagate by
R56 s ' s   from s’ = 60 m to s = 100 m, and so on. It is 

this situation that causes multi-stage CSR amplification. 
Here we note that more complete analysis needs to take 
Landau damping factor into account and we refer the 
interested reader to Ref. [24]. In contrast, the situation for 
Example 2 (right figure) is more alleviated because of 
much smaller amplitudes of R56 s ' s  . 

 

Figure 6: R56 s ' s   quilt patterns for the two Example 

lattices: Example 1 (left) and Example 2 (right). 

 
The third example is based on the circulator cooling 

ring (CCR) for MEIC [7]. Maintaining excellent phase 
space quality for the electron beam is known crucial to the 
electron cooling efficiency. This preliminary design is 
based upon the topological structure of figure-8 collider 
ring. Such design of an ERL-based electron cooler ring is 
characteristic of two 30-m cooling solenoids cross the 
center of the electron collider ring and composed of 
horizontal dipoles around the four corners and vertical 
bending dipoles around the two non-diagonal corners to 
meet the requirement of 3 stacked figure-8 rings [7]. Note 
here that the transverse beam dynamics in horizontal and 
vertical planes are coupled in the cooling solenoids, 
though our theoretical formulation [Eq. (8)] assumes no 
coupling. Note however that the first-order transfer matrix 
of a solenoid does not couple the transverse degrees of 
freedom to the longitudinal motion. Therefore, we remove 
the solenoid sections out from our simulations without 
affecting the CSR microbunching dynamics within the 
framework [25]. Table 2 lists the initial beam and Twiss 
parameters for MEIC CCR [7]. 
 
 
 
 

Table 2: Initial Beam and Twiss Parameters for MEIC 
CCR [7] 

Name Value Unit 

Beam energy 54 MeV 

Beam current 60 A 

Normalized emittances 3 (in both planes) μm 

Initial beta functions 10.695/1.867 m 

Initial alpha functions 0 (in both planes)  

Energy spread 
(uncorrelated) 

1.0×10-4  

 
Microbunching gain spectra Gf(s) from Eq. (8) for 

different combinations of impedance models are 
demonstrated in Fig. 7 where we found the 
microbunching gains with λ ≈ 350 μm reach the maximal. 
Unlike Example 1 and 2, LSC shows a detrimental effect 
on MEIC CCR, due to (relatively) low beam energy and 
high bunch charge. Figure 8 shows the gain evolution 
G(s) along the ring, where we can see the microbunching 
gain starts to build up at the second arc (“10-o’clock 
arc”), continually develop at the third arc, and eventually 
increase to a huge level when the beam is sent back to the 
beam exchange system. 

Our study indicates that the preliminary design of CCR 
for high-energy electron cooling is at risk of 
microbunching instability; an improved design is required 
to suppress such instability and/or alternative beam 
transport scheme would be considered in order to 
compensate and to circulate the electron beam as many 
turns as possible [7] while maintaining high phase space 
quality of the electron beam required by sufficient 
electron cooling efficiency. 

We emphasize here that, for MEIC CCR, due to its high 
bunch charge (~ 2 nC) as well as low energy spread (~  
10-4), as expected, microbunching, greatly accumulates 
along the beamline and over a broad spectral range of 
density modulation. 

 

 

Figure 7: Microbunching gain spectra as a function of 
initial modulation wavelength for MEIC CCR lattice. 
Note that, due to ultrahigh gain, we do not benchmark 
these results directly, but we do for a case with 10 times 
larger the transverse emittances and have confirms the 
validity of our simulation results [24].  
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Figure 8: Microbunching gain functions G(s) for MEIC 
CCR lattice; here λ = 350 μm. The inset illustrates 
schematic layout of the circulator ring. 

SUMMARY AND CONCLUSION 
In this paper, we have first summarized relevant 

impedance models for microbunching instability study, 
including CSR and LSC, and outlined the theoretical 
formulation based on (linearized) Vlasov equation by 
treating this problem in frequency domain. The solution to 
the governing equation [Eq. (8)] can be self-consistently 
obtained (i.e. direct solution) or found through numerical 
iteration (i.e. iterative solution). With introduction of 
stage gain concept, the individual iterative solutions can 
be connected through the lattice optics R56 s ' s   in a 

physical way. Moreover, the stage gain coefficient 
[defined in Eq. (17)] can be applied to make quick 
estimation for the maximal CSR gain provided a lattice is 
given (Fig. 5). 

Then, we have illustrated, based on two comparative 
high-energy transport arcs, the optics impact on the 
microbunching gain development using the developed 
stage gain concept. We also presented the microbunching 
gain analysis for a circulator cooling ring design of MEIC 
and concluded that such preliminary design is subject to 
both CSR and (primary) LSC induced microbunching 
instability. 

Finally, it is interesting that although the emittance 
preservation is of original/primary consideration for the 
proposed Example 2 design [21, 22], it also works well 
for microbunching gain suppression. 
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