Author: Meng, W.
Paper Title Page
MOPBTH005
A FFAG-ERL at Cornell, a BNL/Cornell Collaboration  
 
  • G.H. Hoffstaetter, I.V. Bazarov, J. Dobbins, B.M. Dunham, C.E. Mayes, J.R. Patterson, D. Sagan
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • I. Ben-Zvi, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, W. Fischer, Y. Hao, W. Meng, F. Méot, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, D. Trbojevic, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
 
  Cornell University has prototyped technology essential for any high-brightness electron ERL. This includes a DC gun and an SRF injector Linac, a high-current CW cryomodule, a high-power beam stop, and several diagnostics tools for high-current and high-brightness beams. All these are now available to equip a one-cryomodule ERL, and laboratory space has been cleared out and is radiation shielded to install this ERL at Cornell. BNL has designed a multi-turn ERL for eRHIC where beam is transported 22 times around the RHIC tunnel. The number of transport lines is minimized by using two non-scaling FFAG arcs. A collaboration between BNL and Cornell has been formed to investigate the new NS-FFAG optics of this design, built with permanent magnets, and to commission the unprecedented multi-turn ERL operation. This collaboration plans to install a NS-FFAG return loop and the associated optics-matching sections at Cornell’s one-cryomodule ERL. This FFAG-ERL will be installed in several stages, each of which investigates crutial parts of this new design.  
slides icon Slides MOPBTH005 [14.410 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIBLH1023
The Progress of Funneling Gun for eRHIC Injector  
 
  • E. Wang, I. Ben-Zvi, D.M. Gassner, R.F. Lambiase, W. Meng, T. Rao, B. Sheehy, J. Skaritka
    BNL, Upton, Long Island, New York, USA
  • M.A. Ackeret, J.R. Pietz
    Transfer Engineering and Manufacturing, Inc, Fremont, California, USA
  • E. Dobrin, R.C. Miller, K.A. Thompson, C. Yeckel
    Stangenes Industries, Palo Alto, California, USA
  • O.H. Rahman
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A prototype of the high average current polarized electron funneling gun as ERL-FFAG based eRHIC injector has built at BNL. In last year, we generated two beams from GaAs photocathodes by CW green laser and combined by a switched combiner field. We observed the combined beams on a YAG crystal ,measured the photocurrent and cathode lifetime by a Faraday cup. In this paper, we will describe the major components of the gun and beam line optics. We will also discuss the recent beam test results and high voltage conditioning results.
 
slides icon Slides TUIBLH1023 [10.603 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)