

Status of the CW ERL Cryomodule at **Daresbury**

Shrikant Pattalwar ASTeC, STFC, Daresbury Laboratory (UK)

ERL-2013, September 9-13, Novosibirsk

On behalf of

ERL Cryomodule Collaboration

OUTLINE

Introduction

Design – Assembly

Offline Tests

Integration and Commissioning

Future Plans

2

Introduction

The aim – To build and test the ERL Cryomodule with beam on ALICE

Science & Technology Facilities Council

Introduction - The ERL Cryomodule

Existing Cryomodule on ALICE

Parameter	Target	
Frequency (GHz)	1.3	
Number of Cavities	2	
Number of Cells per Cavity	7	
Cavity Length (m)	0.807	
Cryomodule Length (m)	3.6	
R/Q (Ω)	762	
E _{acc} (MV/m)	>20	
E _{pk} /E _{acc}	2.23	
H _{pk} /E _{acc}	46.9	
CM Energy Gain (MeV)	>32	
Q _o	>1010	
Q _{ext}	4 x 10 ⁶ - 10 ⁸	
Max Cavity FWD Power (kW)	20 SW	logy

Introduction - Major Variations in the Design

- 1. High Power Input couplers Cornell ERL injector coupler
 - 2. Modified Saclay-II tuners Wider aperture. Low voltage piezo cartridges.
 - 3. HOM absorbers Cornell ERL injector CM with Ferrite Absorbers (@ 80K)
 - 4. Several thermal transitions (intercepts) cooled by GHe

5

Introduction - Major Variations in the Design

Off-line Cold Tests

- Check the cryogenic performance
 Understand the processes and establish commissioning and operating procedures
- Validate instrumentation
- Make the task of integration with ALICE easier
- Identify and resolve any unknown issues

Off-line Cold Tests – with LN2

Calibration error 300 Channels 8005:deaK [deaK] **Cavity Temperatures** 8010:degK [degK] 8003:degK [degK] LIN-CRY-TI-8001:degK [degK] LIN-CRY-TI-4351A:T01 [K] 250 LIN-CRY-TI-43\$2A:T01 [K] 200 **Specification Parameters** Measured* Static Heat Load at 80K (HOMs, Thermal ~ 7 W 20W 150 shield and intercepts.) Static heat losses for ~ 3.5 W 15 W at 4K the cavities at 80K 100 Delta T across thermal < 5K<10K shield at equillibrium 12 hrs 50 < 5K Delta T across the two Currently 50K cavities during < 5Kto 60K for cooldown й ALICE 01/23/20101/23/201021/23/201021/23/201021/24/201021/24/201021/ 12:00:00 15:00:00 18:00:00 21:00:00 00:00:00 03:00:00 06

Off-line Cold Tests – with LHe⁴

ERL'13 September 9-13, 2013, BINP- Novosibirsk

Integration and Commissioning – Installation on ALICE

ERL'13 September 9-13, 2013, BINP- Novosibirsk

Integration and Commissioning – COOL-IT (Providing <u>Cool</u>ing Power at Intermediate <u>Temperatures</u>)

- Input He gas at 300 K, maximum 10 bar, 10 g/S *LHe at 4 K*
 Output He gas at 5 – 6 K, 5 W, ~ 5 bar He Gas at 80 – 90 K, 175 W, ~ 5 bar
- Only one control valve for the operation with HOMs as primary cooling load
- Operation fully independent of ALICE Cryo-system (except for LHe and LN2 supply)
- Three main components Heat Exchanger Box, A compound transfer Line (TLx), and a LHe transfer line (TLy)

Integration and Commissioning – Cooling Circuits

Integration and Commissioning – COOL IT evolution

Integration and Commissioning

Integration and Commissioning – ALICE Cryogenics

Preliminary cool down

Cryomodule cooled to 2K
Static heat load measured at 2K~ 6W Similar to previous cryomodule, Spec- 15W
Base heat load measured at 2K ~ 2.5 g/s Similar to previous cryomodule
Intermediate Temperatures has been achieved with GHe using COOL-IT Gas pressure ~ 2 barA

•HOMs, coupler intercepts and thermal shield are connected in series

- Circuit 1: T_{in} ~ 89K , T_{out} ~ 99K
- Circuit 2: $T_{in} \sim 13.5K$, $T_{out} \sim 15.5K$

•Pressure stability at 2K (30mbar) ±0.05 mbar

>Further optimisation is in progress

Integration and Commissioning – CM Cryogenic Performance

Integration and Commissioning – CM Static Heat Load at 2K

6/5/2013 2:50:31 PM

DARESBURY04 (ALICE)

Static heat load measured with all the input valves closed to ensure that only the boil off from the cryostat is measured

- 0.6 g/S total mass flow Linac + Booster
- ⇒ 0.3 g/S per module

⇒ ~6.2 W per cryomodule

ERL'13 September 9-13, 2013, BINP- Novosibirsk

Integration and Commissioning – Cavity Frequency

• Linac 1

• Linac 2

- Cavity tuner operation verified
- Tuning achieved
- Tuning range ±350 kHz
- Q_{ext} adjusted
- Full extent of adjustment to be determined

Previous mechanical issue

Integration and Commissioning – Microphonic Tests

Original Linac

- The microphonics were tested in CW mode, open loop operation.
- Cavity was driven by signal generator
- A Hittite phase detector was used to measure the phase difference between the cavity probe signal and the system generator signal.

• New ERL Linac

- The new ERL cavities were driven with a CW wave from the digital LLRF system. The cavity probe signal is then mixed with the forward RF signal and filtered by a low pass filter.
- The cavities have been analysed in self excited loop and open loop operations.

Based on the LLRF4 development board, designed by Larry Doolittle of LBNL

Integration and Commissioning – LINAC Cavity 2

Detuning peaks at 22Hz, 70Hz,63Hz,139Hz,386Hz.

- Open loop operation, strong resonances have been observed at:-
- ⇒ 1Hz, 7Hz , 21.5Hz, 23.5Hz, 35Hz, 48Hz, 68Hz, 71Hz, 78Hz, 82Hz, 98Hz, etc.
- Loop closed, resonances remain at 1Hz, 37.5Hz, 50Hz and its side bands.

Integration and Commissioning – Cryogenic Performance

Parameter	Unit	Measured Value	Spec		
Base temperature	Κ	2.0	2.0		
Static heat load	W	6.2	15	Single shot mode at 2K	
Static base heat load	g/S	2.5	1.5	With flash gas (additional heat leak from external components)	
Pressure stability	mbar	± 0.05	± 1.0	at 2K	
HOM Intercepts	K	13.5 < T < 15.5	< 20	CKT -1 at GHe 2.0 barA	
HOM Intercepts	K	89 < T < 99	< 90	CKT -2 at GHe 2.0 barA	
Shield	K	89 < T < 99	< 90	CKT -2 at GHe 2.0 barA	
Cavity Frequency	GHz	1.3	1.3		
Tuning range	KHz	±350			
Dynamic performance to be measured					

Static performance similar to ALICE LINAC

Held up due to major blockage in helium liquefier (TCF 50).

Operation expected to resume in mid October

ERL'13 September 9-13, 2013, BINP- Novosibirsk

Integration and Commissioning – Future Plan

Evaluation Programme:-

- •Establish gradient and Q₀
- •Measure Lorentz force detuning at high gradient
- •Performance measurements with piezo tuners
- •Determine DLLRF control limitations wrt Q_{ext}
- •Evaluate the effect of beam loading with DLLRF, piezo control for various Q_{ext} levels under pulsed and CW conditions
- •Characterise cavities in CW mode at high gradient:
 - Evaluate thermal transients across cavity string and 2-phase line

Cryomodule installed on ALICE

