# **Optics Design for the Commissioning of the Compact ERL Recirculation Loop**

ERL 2013

#### The 53th ICFA Advanced Beam Dynamics Workshop on Energy Recovery linac

Miho Shimada<sup>\*</sup>, Norio Nakamura, Yukinori Kobayashi, Tsukasa Miyajima, and Kentaro Harada High Energy Accelerator Research Organization, KEK

> Ryoichi Hajima Japan Atomic Energy Agency, JAEA



# Outline

#### Introduction of Compact ERL

#### Start-to-end (S2E) simulation for the Compact ERL (cERL)

- Optimization of injector and recirculating loop
- Particle tracking simulation including space charge or CSR wake effects

#### Applications

- Laser inverse Compton scattering
- THz-CSR and bunch compression
- Beam loss and field-emission
- Summary

### Site and construction of cERL



## Final Goal of cERL, double Loop

- Why did we choose a double loop circulator?
  - It is for saving construction area number of accelerator cavities running cost of the refrigerators

| Injection energy | 5- 10 MeV   |
|------------------|-------------|
| Full energy      | 245 MeV     |
| Electron charge  | 77 pC       |
| Average current  | 10-100 mA   |
| Normalized       |             |
| emittance        | < 1 mm-mrad |
| Bunch length     | 1-3 ps      |
| Momentum spread  | < 1e-3      |



# First commissioning of recirculation Loop



- Only two superconducting cavities are installed.
- Circulating energy is 20 35 MeV with injection energy of 3.4 5 MeV
  - Revolution time depends on the circulating energy.
- **Tunable range of the circumference is**  $\pm$  **25 mm.** 
  - Couples of steering magnets in the arcs ( $\pm$ 20mm) , Chicane in the straight line ( $\pm$ 5mm)
- Applications
  - X and gamma-ray source by Laser inverse Compton scattering (LCS)
  - THz source of CSR from short electron bunch

## **Start-to-end simulation**



#### General Particle Tracer, GPT

- 6D tracking code with mesh based 3D space charge effect
- CSR wake effects can be calculated but it costs huge calculation time...

#### "elegant"

- Matching of the linear optics is based on the transport matrix.
- 1D CSR wake with transient effect and over a drift
- lacking space charge effects

#### □ Injector $\rightarrow$ Switch point A

- Optics is optimized by GPT
- **Switch point A**  $\rightarrow$  **Dump** 
  - Optics is optimized by elegant
  - Particle Tracking
    - "elegant" to simulate CSR wake effect
    - ✓ GPT to simulate space charge effect

### Layout and optimization of injector

- 1. Minimization of emittance at the switching point A
- 2. Matching with circulator loops



### **Results of optimization of injector**



## **Optical functions of circulating loop**



Point A

- Just after acceleration up to 35 MeV to dump.
- 5 MeV and 35 MeV pass through the same transport line.
  - Optics is optimized for the lower energy beam.
- Arc section is based on TBA with isochronous condition.
  - Triplet between the bending magnets is DFD to make it easy to match the optical functions.

#### Effects of space charge on beam size





- Particle tracking is performed with GPT.
- Horizontal beam size increase at the dumpline.
- There are no significant effects of space charge before energy recovery.

### **Emittance growth caused by space charge**



## **Energy and bunch length**



□ Space charge effect increase the energy spread and bunch length

## Effects of CSR wake on horizontal beam size and emittance



• Energy spread almost doubles after energy recovery but it still less than 0.001.

□ There are no significant effects of CSR wake in the recirculating loop.

## **Applications of cERL**



- Collision point of LCS
- Laser optical cavity

- THz-CSR from short electron bunch
- Bunch length is less than 150 fs

#### Laser inverse Compton scattering

![](_page_14_Figure_1.jpeg)

### **Bunch compression for THz light source**

![](_page_15_Figure_1.jpeg)

#### **Beam loss rate**

![](_page_16_Figure_1.jpeg)

- **D** Physical aperture larger than  $5\sigma$  satisfies beam loss rate less than 1e-6.
- Thanks to the large apertures after energy recovery, there is no significant beam loss even a deteriorated electron beam ( $\sigma_p/p=0.002$ ,  $\epsilon_{nx}=\epsilon_{ny}=10$ mm-mrad).

### Loss of field emitted electrons

![](_page_17_Figure_1.jpeg)

Additional radiation shields were installed based on the results of a particle tracking simulation

# Summary

#### Start-to-end simulation

- S2E simulation is performed to estimate the collective effect (space charge and CSR wake) on the commissioning energy of cERL.
- Tracking results shows there is no significant effects on the beam.

#### Applications

- Effects of alignment of Q magnets and space charge effect on beam size are simulated at the collision point of LCS.
- Rms bunch length can be compressed less than 150 fs for THz-CSR light source even the commissioning mode of 35 MeV.

#### Beam loss

- Beam loss due to physical aperture and loss of field-emitted electron are evaluated.
- The simulation results is reflected in the design of radiation shielding.

#### **Commissioning of recirculation loop will start this December !**

## Thank you for your attention