

DC Photoemission Gun Development for the compact ERL

JAEA

KEK

N. Nishimori, R. Nagai, S. Matsuba, R. Hajima

- M. Yamamoto, T. Miyajima, Y. Honda
- Hiroshima U. H. Iijima, M. Kuriki
- Nagoya U. M. Kuwahara

2

ERL 2013

Outline

- Introduction
- Discharge problems in DC gun
- 500keV beam generation
- Operation at the compact ERL
- Summary

The next generation ERL light sources

- Diffraction limited X-ray
- Short pulse X-ray (sub-pico seconds)
- XFELO $(\Delta \omega / \omega = 10^{-6} 10^{-8} \text{ XFEL:} 10^{-3})$
 - PEAR Photon Factory Synchrotron Radiation Return Loop Electron Gun Injector Linac Beam dump Superconducting Main Linac Merger Accelerating Beam **RF** Phase **Deccelerating Beam**

 Laser Compton Scattering γ-ray source (flux of > 10⁶ of conventional sources)

Nondestructive assay of spent nuclear fuels or melt nuclear fuels

Requirements for the gun parameters for the ERL light sources

Generate low emittance and high current beam

- •Suppress emittance degradation downstream (high voltage)
- •Suppress emittance degradation on cathode (high field)
- •Generate high intensity X, γ-ray (high current)

Gun parameters	Requirements
High voltage	500kV
Field on photocathode	>5MV/m
Beam current	100mA
Normalized emittance	0.1-1 µmrad

Operational voltage of photo-gun has been limited to 350kV since the first proposal of the 500kV photo-gun in 1991. The high voltage issue is our first priority.

eld emission

electrode

stem

electrode

stem

eld emissio

5

ERL 2013

guard rings

Discharge problems in DC gun

- 1: Discharge on insulator ceramics caused by field emission from a central stem electrode
- Employ segmented ceramics
- R. Nagai, et al., Rev. Sci. Instrum. 81, 033304 (2010)
- 2: Discharge between the cathode and HV chamber (anode) which propels microparticles on the HV chamber surface to the cathode. The microparticles serve as a field emission site.

HV chamber

HV chamber

September 12, 2013

N. Nishimori "ERL-2013"

HV conditioning

8

ERL 2013

High voltage as a function of gas desorption

Beam line for the DC gun at JAEA

Beam profile

500keV beam generation

440keV beam generation for 0.5 hours

ERL 2013

SF6 Tank with HV Power Sup

le Preparation Cl

ERL 2013

cERL (prototype of the ERL light source) gun X-ray, 7-ray SCA Laser supercavity Injector acc. gun Jul IA Injector acc.

14

Gun operation during injector commissioning

- Stable operation at 390kV for 200 hours ۰
- Vacuum pressure of1.4x10-9Pa • (connected to the downstream beam line)

- 1/e life 5000 hours (7 months)
- Good for commissioning with low current beam

ERL 2013

Preliminary emittance measurements

Y. Honda, et al., "Beam Performance Measurement at compact-ERL Injector", PS03, "ERL-2013" (2013).

Emittance at the injector at E=5MeV

Phase space distribution measured with a slit scan

Summary

Results at JAEA

- ✓ Applied 500kV with 5.8 MV/m on the photocathode center
- ✓ Generated 500keV electron beam from the photo-gun with current up to 1.8mA

Results at cERL

✓ Provided 390keV beam stably for the injector commissioning

✓1/e life of GaAs cathode is 7 months

✓ Preliminary thermal emittance of 0.1mm-mrad with a 530nm laser of spot size of about 1mm in diam.

Future work

- □ Address the problem of our high voltage power supply for 500kV-10mA operation
- □ Address the problem of our segmented ceramics (8 segments -> 10 segments)
- Develop a photocathode appropriate for high current operation