





# Construction and Commissioning of Compact-ERL Injector at KEK

Shogo Sakanaka (KEK) for ERL Development Team in Japan

ERL-2013, 9 -13 September, 2013, at BINP, Novosibirsk, Russia



Slide v2

## ERL Development Team in Japan





# Outline

- I. KEK "PEARL" project and status of Compact ERL
- II. Commissioning of cERL injector
- III. Construction status of return loop
- IV. Conclusion
- V. Acknowledgment

## I. KEK "PEARL" Project and Status of Compact ERL













4

## ERL Light Source Project (PEARL) at KEK



http://ccdb5fs.kek.jp/tiff/2012/1224/1224004.pdf

## Tentative Design of 3-GeV ERL



#### Assumptions:

- Beam energy
  - Full energy: 3 GeV
  - Injection and dump :10 MeV
  - XFEL-O: 6-7 GeV
- Circumference : ~ 1600 m
- Main linac
  - Eight 9-cell cavities in a cryomodule
  - 28 cryomodules (224 cavities)
  - Cavity acc. gradient : 13.4 MV/m
  - Triplet QMs between cryomodules
  - Total length : ~ 470 m
    (average acc. gradient : 6.4 MV/m)
- TBA cells for ID's
  - 22 x 6 m short straight sections
  - 6 x 30 m long straight sections
- 300-m long straight section



By N. Nakamura, M. Shimada, and Y. Kobayashi



## Purpose of the Compact ERL (cERL) at KEK

- To demonstrate generation, acceleration, and recirculation of low-emittance, highcurrent beams, which are needed to construct the 3-GeV ERL.
- To demonstrate stable operation of critical components such as the photocathode DC gun and superconducting cavities
- Initial goal: normalized emittance of 1 mm·mrad @7.7pC/bunch (10mA), 35 MeV
- After commissioning, use cERL as laser-Compton X-ray source and high-intensity terahertz source

| Design parameters of cERL                      |                                         |  |
|------------------------------------------------|-----------------------------------------|--|
| Parameter                                      | Goal (future goal in ())                |  |
| Beam kinetic energy                            | 35 MeV<br>(upgradable to 125 MeV)       |  |
| Injector kinetic energy                        | 5 MeV (10 MeV)                          |  |
| Average current                                | 10 mA (100 mA )                         |  |
| Normalized emittance<br>@bunch charge          | 0.3 mm⋅mrad @7.7 pC<br>1 mm⋅mrad @77 pC |  |
| Bunch length (rms)                             | 1 - 3 ps<br>< 150 fs (with B.C.)        |  |
| Accelerating gradient (main linac)             | 15 MV/m                                 |  |
| RF frequency (= bunch<br>repetition frequency) | 1.3 GHz                                 |  |



**Construction Site@KEK** 

Commissioning of injector started in April, 2013.



### Layout of cERL (plan)



#### cERL Injector was completed (April, 2013)



















## 500-kV Photocathode DC gun (#1) at JAEA

#### Ideas

- Segmented insulator for protecting ceramics
- Measures for avoiding big sparks
  - Improved pumping speed
  - Increasing anode-cathode gap:  $100 \rightarrow 160 \text{ mm} (E: 6.7 \rightarrow 5.8 \text{ MV/m})$

#### Successful production of 500-keV, 1.8 mA beam



N. Nishimori et al., Appl. Phys. Lett. 102, 234103 (2013).

#### Goals

| ligh voltage                | 500 kV           |     |       |   |
|-----------------------------|------------------|-----|-------|---|
| Electric field on<br>athode | > 5MV/m          |     |       |   |
| Beam current                | 100 mA           |     |       |   |
| lormalized<br>mittance      | 0.1-1<br>mm∙mrad |     |       |   |
|                             |                  | Ele | ctron | A |

# n ad Electron beam Laser

#### Summary of performance

- Successful production of 500-keV, 1.8mA beams at JAEA
- Maximum electric field on cathode: 5.8 MV/m (@500 kV)
- Normalized emittance: 0.07 mm·mrad @10fC (at cERL, V=390 kV)
- Long term operation (~ 260 hours) at V=390 kV at cERL 10

HV terminal

#### Status of 500-kV Photocathode DC Gun (#2)

Yamamoto's Talk



#### **Gun-Drive Laser System**

By Yosuke Honda

#### System

- 1.3GHz Nd:YVO<sub>4</sub> oscillator ( $\lambda$ =1064 nm)
- Yb photonic-fiber amplifiers (two stages)
- Second-harmonic generation ( $\lambda$ =532 nm)
- Temporal shaping with birefringent crystal
- Gate system for CW/macropulse operations

#### **Specifications**

- Maximum beam current: 10 mA (CW)
- Laser power: 2.3 W@532 nm (if Q.E.=1%) (P=70 W@1064 nm has been demonstrated)



#### **Gun-Drive Laser System**



Laser profile at virtual cathode CCD camera.



**Drive-Laser System** 



#### **High-Power Test of Injector Cryomodule**

By E. Kako et al.

Eacc[MV/m]



HOM feedthroughs. We plan to improve the feedthroughs and

cooling.

#### Processing of Cavity -2 : (2013, Feb. 7-8, 13)

## High-power Test of Main-Linac Cryomodule

#### By T. Furuya et al.

Hara's poster (PS15)

# SpecificationsRF frequency: 1.3 GHzInput power : 20 kW CW (SW) $E_{acc}$ : 15 - 20MV/mUnloaded-Q: $Q_0 > 1 \times 10^{10}$ Beam current : max 100mA<br/>(HOM-damped cavity)







#### Summary of performance

- Vc=16 MV was achieved for both cavities.
- Vc=13.5-14 MV could be kept for more than 1 hour
- Onset of radiation due to field emission: 8-10 MV/cavity (not very good)
- To increase the onset of field emission, we plan to refine moduleassembly technique.



ERL Main Linac Cryomodule High Power Test (Radiation on axis vs Vc)



# II. Commissioning of cERL Injector













### cERL Injector (upstream part)



#### **Injector Beamline and Diagnostics**

By T. Miyajima and Y. Honda



#### **Optics Design of cERL Injector**



## Typical Parameters of cERL Injector

By T. Miyajima and Y. Honda

|                                                          | Simulation (low charge) | Simulation $(q_{\rm b}=7.7 \text{ pC})$ | Operation<br>(low charge)  | Operation<br>(q <sub>b</sub> =7.7 pC) |
|----------------------------------------------------------|-------------------------|-----------------------------------------|----------------------------|---------------------------------------|
| Charge/bunch                                             | ~ 10 fC                 | 7.7 pC                                  | ~10 fC                     | 7.7 pC                                |
| Gun DC voltage                                           | 390 kV                  | 390 kV                                  | 390 kV                     | 390 kV                                |
| Spot diameter of laser                                   | 1.1 mm                  | 1.1 mm                                  | 1.2 mm                     | 1.2 mm                                |
| Laser pulse width                                        | 3 ps rms<br>(Gaussian)  | 16 ps FWHM<br>(flat)                    | 3.3 ps rms<br>(Gaussian)   | 15.7 ps FWHM<br>(semi-flat)           |
| Magnetic fields of solenoids #1, #2                      | (0.020, 0.024) T        | (0.029, 0.018) T                        | (0.0248, 0.0103) T         | (0.0286, 0.0172) T                    |
| Voltage and phase of buncher cavity (0 degree: on-crest) | 0 kV                    | 50 kV, -90 deg.                         | 0 kV<br>or 40 kV, -90 deg. | 50 kV, -90 deg.                       |
| $E_{\rm acc}$ of three injector cavities                 | (6.1, 6.1, 6.1) MV/m    | (7, 7, 7) MV/m                          | (6.2, 6.7, 6.2) MV/m       | (6.2, 6.7, 6.2) MV/m                  |
| Phase of three injector cavities (0 degree: on-crest)    | (0, 0, 0) degree        | (0, 0, 0) degree                        | (0, 0, 0) degree           | (0, 0, 0) degree                      |
| Beam kinetic energy after acceleration                   | 5 MeV                   | 5.7 MeV                                 | Typ. 5.5 MeV               | Typ. 5.5 MeV                          |

Parameters similar to those under beam operations were chosen (not optimum for emittance minimization).

# Typical parameters of macropulse-beam operation:

Macropulse beams were used for destructive beam measurements.

| Repetition frequency of bunches | 1.3 GHz                                                    |
|---------------------------------|------------------------------------------------------------|
| Charge/bunch                    | 10 fC - 7.7 pC                                             |
| Repetition rate of macropulses  | 5 Hz (typ.)                                                |
| Width of macropulse             | $1 \ \mu s$ (typ.)<br>or 1.6 ms (for high average current) |
| Rise/fall times of macropulse   | ~10 ns                                                     |

#### Successful Accelerataion of Beams to 5.6 MeV (22-26 April, 2013)





#### **Beam Emittances of Accelerated Beams** (T=5.6 MeV, low bunch charges)

Honda's Poster (PS03)



Measurement conditions:

Measured on 21-June-2013 After fine RF-phase tuning Buncher: OFF or ON (Vc=40 kV) Laser: short-pulse (~3 ps rms) Bunch charges: 0.02, 0.77 pC

#### Charge: 0.77 pC/bunch (buncher off)



Horizontal phase-space



Vertical phase-space

#### Beam Emittances at High Charges (tentative results) (T=5.6 MeV, up to 7.7 pC/bunch)



Machine parameters have not been optimized yet !

#### **Bunch-Length Measurements**

Honda's Poster (PS03)



#### Spread and Stability of Beam Momentum

By Y. Honda and T. Miura



#### **Typical Operation Status (23-May-2013)**



## Operation Statistics of cERL-Injector (April - June, 2013)

| Month | Machine Operation<br>Time* (hours) | Beam ON Time (hours) | Operation Time of Helium<br>Refrigerator (hours) |
|-------|------------------------------------|----------------------|--------------------------------------------------|
| April | 92                                 | 24                   | 185                                              |
| May   | 111                                | 70                   | 291                                              |
| June  | 157                                | 106                  | 315                                              |
| Total | 361                                | 202                  | 792                                              |

\* Including conditioning

#### Present Performance of cERL Injector (at the end of June, 2013)

| Parameter                                             | Achieved                                                 | Comment and Outlook                                                                                     |
|-------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------|
| Kinetic beam energy T                                 | 5.6 MeV (typ.), 5.9 MeV (max.)                           | $T \le 6 \text{ MeV}$ is allowed at present.                                                            |
| Average Beam current I <sub>0</sub>                   | 300 nA (max.)                                            | $I_0 \le 1 \ \mu A$ is allowed at present.<br>Beam current will be increased step by step.              |
| Gun High Voltage V <sub>gun</sub>                     | 390 kV (typ.)                                            | Very stable for more than 200 hours.<br>Higher voltage is expected by polishing<br>insulating ceramics. |
| Accelerating gradient of injector cavities $E_{acc}$  | 7 MV/m (typ.)                                            | CW operation. Very stable for more than 200 hours.                                                      |
| Normalized beam emittance<br>(T=390 keV, low charge)  | ≈ 0.07 $\mu$ m·rad (@~10 fC/bunch)                       |                                                                                                         |
| Normalized beam emittance<br>(T≈5.6 MeV, low charge)  | ≈ 0.17 μm·rad (@0.02 pC/bunch)                           | Close to the limitation of present instrumentation. Emittance might be smaller.                         |
| Normalized beam emittance<br>(T≈5.6 MeV, high charge) | ≈ 0.8 μm·rad (@7.7 pC/bunch)                             | Further improvement is expected by optimizing machine parameters and by higher gun voltage.             |
| Momentum jitter $(\Delta p/p)_{\rm rms}$              | 6×10 <sup>-5</sup>                                       | On-crest acceleration. With high rf-<br>feedback gain.                                                  |
| Bunch length and energy spread                        | See graphs in these slides.<br>(depend on bunch charges) | Parameters have not been optimized yet under space-charge effect.                                       |

#### III. Construction Status of Return Loop

### Return loop is under construction (July - November, 2013)

#### Schedule

- Jul. Nov., 2013 : Construction of return loop
- Nov. (2nd half) : Conditioning of SC cavities
- Dec. 2013
- : Commissioning of cERL





Linear optics of cERL

Shimada's Talk







1st arc

South straight section

Alignment of magnets

### **Future Schedule**

| Dec. 2013 - Mar. 2014 | Initial commissioning of cERL                           |                 |  |
|-----------------------|---------------------------------------------------------|-----------------|--|
|                       | (beam current: 10 μA max.)                              |                 |  |
| Apr Dec. 2014         | Operation and study of cERL                             |                 |  |
|                       | Construction of Laser-Compton Scattering (LCS) beamline |                 |  |
| Jan.(?) - Mar., 2015  | Commissioning of LCS beamline (by JAEA)                 |                 |  |
|                       | Increasing beam current                                 |                 |  |
| Apr. 2015 -           | Machine study                                           | Nozawa's Poster |  |
|                       | Operation for LCS and THz beamlines                     | (PS01)          |  |

Laser-Compton Scattering X(γ)-ray Beamline (by JAEA)



# IV. Conclusion

### Construction

- 6-MeV cERL injector was completed and commissioned in April 2013. ٠
- Return loop of cERL is under construction (Jul. Nov. 2013). lacksquare
- Commissioning of entire cERL is scheduled in Dec. 2013.

## **Commissioning of injector**

- We operated cERL injector for about three months (22 Apr. 28 Jun., 2013) ullet
- Both photocathode DC gun (V=390 kV) and injector SC cavities ( $E_{acc}$ =7 MV/m)  $\bullet$ could be operated very stably. We observed almost no trips due to these components.
- We observed very-low normalized emittances ( $\approx 0.1-0.2 \ \mu m \cdot rad$ ) at low • charges (~10 fC/bunch) at T=390 keV and T=5.6 MeV.
- At high charges (~7.7 pC/bunch), we are on the way to optimize the ulletparameters. At the moment, we observed normalized emittances of about 0.8  $\mu m \cdot rad.$
- We also observed axially asymmetric profiles of beams at high charges, which should be understood. (Maybe, hybrid effect of space charge and beam offset in cavities?) 32

# V. Acknowledgment

### **Collaboration and Discussions**

We are grateful to the Cornell University, Argonne National Laboratory, Jefferson Lab., TRIUMF, HZDR, HZB, ASTeC, and the other institutes, for useful discussions, advices, or collaboration.

## **Special Thank**

We sincerely express our thank to Dr. Gennady N. Kulipanov, the chairman of this workshop, for his series of seminars and fruitful discussions during his stay in KEK (Sep. - Oct., 2001). His deep insight stimulated us interests in future light sources based on recirculating linacs and ERLs.



Dr. Kulipanov



One of the OHP sheets of his seminar in 2001.

## Let's collaborate together !

