

Status of the MESA Project

Mainz Energy recovering Superconducting Accelerator:

A small superconducting accelerator for particle and nuclear physics

Kurt Aulenbacher for the MESA-Project-team

> Novosibirsk September 9, 2013

Contents

- Project objectives
- R&D issues: SRF
- R&D issues: Beamdynamics & Lattice

MESA: Real estate conditions

PRISMA

MESA: A Concept and its history

MESA and its Research fields

MESA's main objectives

- 1. Accelerator physics: Multiturn, superconducting ERL
- 2. Particle Physics: Precision measurement of the weak mixing angle (P2-experiment)
- 3. New experimental technique for nuclear and particle physics: The PIT high luminosity/low background at low energies

MESA BEAM PARAMETERS:

c.w. beam

EB-mode: 150 μA, 200 MeV spin polarized beam (liquid Hydrogen target L~10³⁹) ERL-mode: 10mA, 100 MeV unpolarized beam (Pseudo-Internal Hydrogen Gas target, PIT L~10³⁵)

During the application process it became evident, that not enough funding would be available to realize the envisaged Beam parameters – only a "stage-1" was requested.

Beam Energy EB/ERL [MeV]	155/105 (205/105)
Operation mode	c.w.
Elektron-sources	Stage-1 : NEA GaAsP/GaAs superlattice, 100keV Stage-2: additional unpolarised KCsSb, 200keV
Bunch Charge EB/ERL [pC] 7.7pC=10mA@1300MHz	0.12/0.77 (0.12/7.7)
Norm. Emittance EB/ERL [µm]	0.1/<1 (0.1/<1)
Spin Polarisation (EB-mode only)	> 0.85
Recirculations	2 (3)
Beampower at Exp. EB/ERL [kW]	22.5/100 (30/1050)
R.fPower installed [kW]	140 (180)

Additional demands occur due to main external experiment....

EB-Experiment: "P2"

150 μA Beamcurrent , 60cm lq. H2, Beampol: 85%. 10000 h Data-taking (~13-15000 h Runtime) High accuracy polarization measurement (Δ P/P=0.5% !!) Extremely high demands on control of HC-fluctuations!

- → ~4000h/Year Runtime
- ightarrow Accelerator must be optimized for reliability& stability

→ P2 is MESA-workhorse experiment ←

e → N⁺ p-Target

Good news: Very flat minimum of total error allows to reduce beam energy to ~150 MeV

A possible accelerator layout

Ralf Eichhorn

Vertical stacking "a la CEBAF" keeps transverse footprint small \rightarrow compatibility with building.

09.09.2013

MESA –"Integration"

V. Bechthold/R. Heine

Accelerator: R&D Issues

Constraints by Budget, Space and Schedule: Technology/Physics solutions must be compatible!

Technology:

- Cryogenics
- Cryomodule

Physics:

- Sources/Injector
- BBU Instability
- Rezirculator (Lattice) Design

Injector-Linac (ILAC)

Motivation for normal Conducting -ILAC:

- Easy maintenance
- No cryogenic load,
- Established design (based on MAMI-ILAC, Th. Weis, H. Euteneuer 1984)

- Phase space shaping by "graded beta" structure
- ~100kW RF Power (50kW beam loading included)
- T=5MeV, $\Delta \psi_{100\%} < \pm 2.3^{\circ}$ $\Delta E/E_{\rm rms}$ =0.01% length: 11,5 m

Detailed results published at IPAC 2013 (R. Heine et al.)

Cryomodules and BBU

Fig. 1. Three-dimensional drawing of the ELBE cryomodule. J. Te

- "ELBE" Modules are suitable for high gradient c.w. op.
- Commercially available, no additional R&D
- Costs & Delivery time are (to some extent) predictable
- Limitation in Cryopower requires $Q_0=10^{10}$ at 14MeV/m (achieved at DESY/FLASH in operation with TESLA cavity)

Cryomodules and BBU

Higher order modes (HOMs) with "bands" of Eigenmodes e.g. TM11-like. \rightarrow BBU- Instability for beamcurrent > I_T In recirc. Linacs: Feedback-loop with instability threshold!

$$I_{T} = -\frac{2c^{2}}{e\left(\frac{R}{Q}\right)_{HOM}}Q_{HOM}^{ext}\omega_{HOM}}\frac{1}{T_{12}\sin(\omega_{HOM}t_{r})}$$

(simplified formula!)

 T_{12} = Transformation from angle to position t_r = Recirculation - time

General treatment for ERL's G.H. Hoffstaetter, I. Bazarov: PRSTAB 7 054401 (2004)

Cryomodules und BBU

$$I_{T} = -\frac{2c^{2}}{e\left(\frac{R}{Q}\right)_{HOM}}Q_{ext}\omega_{HOM}}\frac{1}{T_{12}\sin(\omega_{HOM}t_{r})}$$

 T_{12} = Horizontal Angle \Rightarrow Position

 T_{34} = Vertical, T_{56} = Longitudinal (Energydeviation to phase)

"High current" – Recirculators call for :

- Strong HOM damping (TESLA-Cavities are not optimzed!)
- Flexible Recirculation optics to adjust T_{12} , T_{34} but probably also T_{56}

Conclusions/conflicts:

- 1. "Non-Tesla Cryomodule" for MESA \rightarrow But: compatible with budget & schedule?
- 2. Second bullet calls for independent orbit recirculation
- \rightarrow But: Polytronrecirculator is more compact , better inherent stability.

Initial-Plan: Use TESLA/Rossendorf Module ("Stage-1" with limited current)

Cryomodule alternative-1

Discussions with JLAB : Fabrication of one further "C-100" cryomodule , identical To the ones used for CEBAF Energy doubling

$$P_{Loss} \propto N_{Cav} E_{Cav}^2$$

$$\Delta U = N_{Cav} E_{Cav} l_{Cav} \Longrightarrow P_{Loss} \propto \frac{\Delta U^2}{N_{Cav} l_{Cav}^2}$$

for given Linac energy gain and cavity length more cavities are advantageous to reduce cryo-load

JLAB "8-seater" C-100 Cryomodule at 1500 MHZ

- + better HOM damping than TESLA
- + several buildt and tested
- MESA energy doubling possible with investment in cryoplant
- Module too long for exisiting shaft

Cryomodule alternative-2

Contacts with CERN LHC/LHeC group (O. Bruning, E. Jensen, M. Klein):

- LHEC needs cryomodule with frequency as an integer multiple of LHC RF (40.079MHz) (802 MHz is almost RF-frequency for SPS, the LHC injector)
- CERN group plans to build ERL test facility with, e.g., 802 MHz cryomodule
- Indications for a support of Testfacility+cryomodule project by CERN-management (final decision end of September 13)
- Common objectives, complementary competences, similar timescale:
 - \rightarrow This may be a great oppurtunity!

E. Jensen, Talk at Daresbury LHeC meeting January, 2013

Two passes 'up' + Two passes 'down'

CERN/MESA Consultations to define a concrete plan **"What it takes to achieve a new cryomodule"** took place in August

ERL WOINSIUCH INOVOSIOIISK

Beam-dynamics: Recirculator-Lattices

Beam-dynamics: Recirculator-Lattices

"CEBAF" inspired

Design: Ralph Eichhorn

Advantage:

- Identical horizontal deflections and magnets
- High symmetry

Problem: Vertikal stacking under very constrained long orbit axis

- Large vertical deflection angles
- Small space for compensation quads.
- ightarrow Vertical dispersion probably difficult to control

We presently investigate also two types of "flat" lattices

EKL WORKSNOP NOVOSIDIRSK

Horizontal lattices: "Conventional recirculator"

"S-DALINAC" inspired

Daniel Simon, Diploma thesis: Sketch of flat lattice with realistic dipole dimensions

Lattice design is ongoing!!

Second option for flat lattice: Polytron recirculator?

Asymmetric Polytron of second order (AP2) (A low budget lattice for up to 8 recirculations)

200 Ek, E_j, Ek

Kinetische Energie [MeV]

300

+ order of magnitude less magnets /parameters compared to conventional recirculator

- Very large turn by turn phase shifts must be compensated by shicanes in several (not all) turns.

09.09.2013

AP2 –advantages wrt other lattices

- 50% reduction of cryoload
- Significant reduction of invest for cryomodules
- Much less space required
- Energy stability/stabilization as in MAMI due to large R₅₆, long bunches allowed

AP2 is kind of a temptation...

The AP2 –temptation: vade retro?!

PRISMA

Possible disadvantages and/or showstoppers

- Fixed optics&larger number of recirculations
 → (too) low BBU threshold?
- Shicanes mandatory
- Complex magnets with small bending radius (first turn critical)
- 25 MeV req. 4 turn ERL (8mA in Linac at stage-1) ??
- Upgrade to 80mA (stage-2)????

Important decisions & Project timeline

- End 2013 Decision Cryomodule
- Spring 2014 Decision Lattice
- Summer 2014 Infrastructure modifications start (Building, 2K System,..)

Acknowledgments

MESA-Project-team:

I. Alexander, K. Aulenbacher, V. Bechthold, Ma.Dehn, Mo.Dehn,

J. Diefenbach, F. Fichtner, S. Heidrich, R. Heine, K.H. Kaiser, E. Kirsch, H.J.-Kreidel, Ch. Matejcek, U. Ludwig-Mertin, F. Schlander, V.Schmitt, D. Simon

MESA is supported by :

- State of Rhineland Palatinate
- German university excellence initiative: PRISMA-Cluster of excellence
- German Science foundation (DFG): SFB 1044
- German Ministry of science & ed. (BMBF):
 - -PCHB- Consortium (Photocathodes for high brillance beams)
 - -HOPE- Consortium (Hochbrillante Photoelektronenquellen)

WE ARE HIRING!

- ERL beam dynamics
- Kryogenics

Contact:

aulenbac@kph.uni-mainz.de

Thank you

MESA-Collaborations

- Collaboration between HZB & KPH
- Consortia within BMBF: HOPE (High brillance sources) KPH/HZDR/HZB and PCHB (Photocathodes for high brillance beams, many partners)
- Contacts related to ERL problems with: CERN/Daresbury/BNL/Daresbury
 → Cryomodule Collaboration??

MESA-Staffing

MESA is PRISMA "Project E". Project leaders: Kurt Aulenbacher & Frank Maas

Task	In charge	Support
General Design, "beam dynamics"	NN, JunProf. (Tenure track W2!) (call 8/2013)	J. Diefenbach, Post-Doc(stabilizations) Ma. Dehn (50%) staff scientist PhD student(NN(*))
Sources	K. Aulenbacher	PhD student (I. Alexander) PhD student (Mo. Dehn) PhD student (NN(*))
RF, Injector	R. Heine (80%), staff scientist	F. Fichtner (engineer) 80% PhD student (NN(*))
SRF Module/Cryogenics	F. Schlander, Post-Doc	PhD student (NN(*)) technician (NN (**))
Control-system	H.J. Kreidel, staff scientist (20%),	P. Schwalbach (technician) 30%
Radiation protection , room temperature systems (magnets, etc.)	NN, staff scientist (80%) Call 7/2013	U. Ludwig-Mertin (staff scientist) 25% U. Reiss (engineer, rad. Prot.) 30% M. Goebel (technician, rad prot.) 30%

Black: PRISMA-personel/Blue: KPH-staff, Percentage: work fraction devoted to MESA/Green: BMBF-personel (*) : Large reservoir of Master/diploma students! (**) Technician will be integrated in TBV.

- Accelerator workshop "TBB" (6 workers&technicians): Contributes strongly to MESA infrastructure (has also to support MAMI and its experiments!)
- Electronics (TBE), mechanical workshops (TBM), vacuum&cryogenics (TBV):
 Contribute to MESA within their capacities! (on average ~6 workers/techicians/engineers in each unit)
- Further MAMI staff (technicians, engineers, operators) are, as a rule, required for MAMI operation, but may deliver support if capacity allows.

Possible CERN/MAINZ/+X Collaboration

Fabrication of a dedicated 802MHz cryomodule: What may we contribute?

- Manpower (Post-Docs, PhD students) •
- Invest (same amount as for commercial acquisition) •
- Infrastructure in **HIM building** (cleanroom, horizontal test stand/bunker) •
- **But:** Only very limited number of engineers, designers, etc....! •

Fabrication of a dedicated 802 MHz cryomodule: Where we need support from collaborators

- Cryomodule design
- Resonator, HOM damping, etc design
- Additional invest ??? •
- Project coordination, management, administration???

CERN/MESA Consultations to define a concrete plan "What it takes to achieve a new cryomodule"

will begin in the first week of August.

F. Marhauser,

Horizontal lattices: Segment Magnet Recirculator

Segment- or "Polytron"- magnet:
Each Orbit enters and exits at THE SAME Pole edge
Orbit is SYMMETRIC around normal to pole edge:
→ Deflection angle 2*pol face inclination
Deflection angle is independent of energy
Very convenient transv. Optics (Apart from fringe fields)
Dispersion cancels after each two deflections
Circular orbits achieved after N*2 Segments N=1 Microtron (not suitable for MESA) N=2 Double sided Microtron (Two dispersion free sections N=3 Hexatron

PRISMA

We investigate an Asymmetric Polytron of second order (AP2) (Not: "single sided DSM")

"Low budget "Lattice Alternative: Segment (Polytron-)Magnet Recirculator: Asymmetric Polytron of second order (AP2)

AP2-Coherence Condition:

Distance between adjacent orbits:

ERL workshop Novosibirsk

Design: K.H. Kaiser

PRISMA

Injection at 5MeV

Infrastructure issues

Building& real estate Propriator is "LBB"

LBB= Landesbetrieb Liegenschaften und Bau Betreuung

- Building has thick walls which have to be cut/drilled (at apropriate places): Building integrety, fire protection by LBB & external companies
- Sufficient electrical & cooling power is available, but machine cooling water hydraulic layout &temperature stabilization by LBB & external companies,
- Option for managing other installation work by in house staff, in particular: lq. Helium distribution/2K booster, Radiation Protection Application

Vertical Optics

Counter-field & gradient lead to strong longitudinal Phase shifts!

..... בווווננטווב.בסווווד

Suche nach dunklen Photonen an MAMI/MESA

"Bump-hunt" Experimente können (M_A'> 100MeV) sofort begonnen werden: MAMI/A-1 und JLAB/Aspect

PRISMA

ERL/PIT: Ein neues Regime bei E<1GeV

Target dichte N=2*10¹⁸ atoms/cm⁻² (3.2 μ g/cm², 5*10⁻⁸ X₀) \rightarrow I₀=10⁻² A: L= 1.2*10³⁵ cm⁻²s⁻¹

- \rightarrow (mittlerer) Enereverlust (Ionisation): ~ 17eV
- \rightarrow RMS Streuwinkel (Vielfachstreuung): 10µrad
- → Single pass Strahlverschlechterung ist akzeptabel

Bei Bunchladung 7.7pC (10mA): $\varepsilon_{\text{norm}} \approx 1 \mu m$

Strahldurchmesser prop. der strahloptischen Funktion β :

$$r_{_{\text{beam}}}^2(z) = \varepsilon_{_{Geo}} * \beta(z)$$

mit
$$\varepsilon_{\text{Geo}} = \frac{\varepsilon_{\text{Norm}}}{\sqrt{\gamma^2 - 1}} \implies \varepsilon_{\text{Geo}}(100 \text{MeV}) \sim 5 \text{nm}.$$

In der feldfreien Region um den Punkt $z^* = 0$

$$\beta(z) = \beta(z^*) + \frac{z^2}{\beta(z^*)} = \beta^* (1 + (z/\beta^*)^2) \text{ wähle: } \beta^* = 1m$$

 \Rightarrow Maximaler Strahldbirchmesser $\leq 0.2mm$ ($z = \pm 1m$)

MESA: Concept and its history

BEAM PARAMETERS:

1.3 GHz c.w.

EB-mode: 150 μA, 200 MeV polarized beam
 (liquid Hydrogen target L~10³⁹)
 ERL-mode: 10mA, 100 MeV unpolarized beam
 (Pseudo-Internal Hydrogen Gas target, PIT L~10³⁵)