

Availability of Optical Fiber Based Beam Loss Monitor at SACLA XFEL Facility

Toshiro Itoga¹, Yoshiro Asano² and Xavier-Marie Marechal

1: XFEL Division, JASRI 2: XFEL Research and Development Division, RIKEN SPring-8 Center

- 1. Motivations
- 2. Configuration of the beam loss monitor
- 3. Specifications of the beam loss monitor
- 4. Status of beam loss monitor @ SCALA
- 5. Summary

Motivation of beam loss monitor

The limitation of the beam loss in undulator section @ SACLA

- Structural limitation of the shielding thickness of undulator hall (1.5m thick)
- Criterion of the radiation safety at site boundary
- Beam loss per pulse was limited 1 pC on average (0.1% of the beam charge)

The causes and prevention of unwanted beam loss in undulator section

- 1. Fault of accelerator, miss operation Possible to find immediately
- 2. Dark current from the accelerating structure
- Enough conditioning
 - Energy filter chicane
- 3. Beam halo Difficult to find (when, where, how?)

Important to monitor the beam loss over a wide range.

Optical fiber based beam loss monitor

Target specifications of beam loss monitor for SACLA

- Sensitivity: ≈1 pC
- Cover a wide range continuously (~120 m) Fiber based beam loss monitor.
- Measure their position
- Evaluate their amount
- Real time

Cherenkov or scintillation

(method using radiation damage are unsuitable)

Principle of fiber based beam loss monitor

Measure the beam loss position from time difference between

- · the signals from both side of detectors or
- master trigger (beam arrival time) and detector signal.

Possibility of evaluation of their amount from amplitude of the detector signal.

Fiber selection

Requirements for the fiber

- Core diameter: 400 um
- Radiation induced loss: below a few dB/km/Gy (expected)
- Attenuation of Cherenkov: 6.8 dB/km (measured)

Specification: Sensitivity

Evaluation of sensitivity @ SCSS (250 MeV, prototype of SACLA)

Dark current

- · Generated in the C-band accelerating structure
- Charge ≈ 10 pC (by CT monitor)
- Amplitude of beam loss monitor: ≈40 mV @ 120 m upstream from loss point.
- Number of secondary electron: SCSS < XFEL

 \Rightarrow We achieved the target specifications (\approx 1pC/pulse, 120m)

Installation in SACLA

PMT: Hamamatsu H6780-02 with FC connector

ADC: CAEN V1729A Switched-Capacitor Digitizer 4 Channel, 14 bit, 2 GS/s (300 MHz bandwidth)

- The fibers are set along the each beam line.
- PMTs are connect at the upstream end of the fiber.
- The wave form data are store in D.B. at 1 Hz (hundreds of Hz maximum).
- Position calibration was carried out using halo monitor signals.

Operation in beam commissioning of SACLA

Graphical user interface on console at control room.

Useful to transfer electron into undulator section in beam commissioning of SACLA.

Calibration of beam loss monitor (preliminary)

- Dosimeter (TLD-100, gamma dose) set along the beam loss monitor at BL3.
- The data of beam loss monitor was integrated and corrected about optical attenuation.

Summary

Fiber based Cherenkov beam loss monitor

- Possible to detect the beam loss
 - Sensitivity: 1 pC (0.1% of the beam charge)
 - Cover a wide range continuously (≈120 m)
 - Measure their position
 - Real time
- Possibility for real time dose meter.
- Useful tool for beam transfer.