

Beam Loss Monitoring and Machine Protection at the ELBE CW Accelerator

Jochen Teichert

50th ICFA Advanced Beam Dynamics Workshop on Energy Recovery Linacs 16-21 October, 2011, Tsukuba, Ibaraki, Japan

Jochen Teichert • j.teichert@hzdr.de • www.hzdr.de • HZDR

Overview

ELBE

- Introduction

 Overview of ELBE
 Operation Modes and Application

 Beam Loss Monitors at ELBE
 Machine Protection Systems
 Experiences
- Present & Planned Upgrades

Jochen Teichert • j.teichert@hzdr.de • www.hzdr.de • HZDF

HOCHETOLABOR

Introduction

The Superconducting CW accelerator at ELBE

ELBE Parameters

Parameter	Present status	Upgrade 2012 ¹⁾
electron beam energy / MeV	8 - 40	8 - 40
accelerating energy per cavity / MeV	10	10
average beam current / µA		
- maximum	1000	1500
-typical FEL operation	800	
bunch charge / pC		
- thermionic injector	77	77
 SRF photo injector 	100	1000
RF power per cavity / kW	8 - 9	16
electron beam power / kW	32	65

¹⁾ klystron replacement by 2 x 8 kW solid-state amplifiers SRF gun with new cavity (35 MV/m peak field)

Introduction

ELBE operation modes

mode	Diagnostic Mode	high current 1 mA mode	Several low current user modes
application	Machine develop. setting optimiz. beam measurem.	FELs gamma rays	Neutrons for ToF exper. (10 μA) Thomson backscattering (10 Hz) positrons (10 100 μA) cell irradiation (pulse train of def. dose)
pulsing	macropulse 0.1 20 ms, 25 1 Hz	CW	CW or macropulses, reduced micro pulse rate
additional monitoring	Cathode current < 10 µA		Cathode current target & apperture currents
limitation	insertion devices (screens, EOS)	beam loss near undulators	User equipment (heat load) detector count rate, background

Introduction

Possible electron beam loss at the ELBE accelerator needs systems for

- Personal radiation protection permission of 1% beam loss @ 1 mA (10 μA)
- Machine protection direct damage from the electron beam long term radiation damage damage in high power RF system

 Background minimization for experiments setting optimization by operator

Jochen Teichert • j.teichert@hzdr.de • www.hzdr.de • HZDR

concep

comparison of tested monitors (2002)

	Compton detector	Photomultiplier	Coaxial cable ionization chamber
sensitivity dynamic range	~ 1 μA > 100 dB	<< 1 μA ~ 40 dB (13 MHz) 260 MHz ?	~ 0,3 μA >100 dB
timing	T _{rise} ~ 2 ms	T _{rise} ~ 1 ns	T _{rise} ~ 0,6 ms
complete beamline monitoring	NO ! yes, if 3 devices/10 m wall openings?	NO ! yes, if 3 devices/10 m wall openings?	YES!
local resolution	according to detector distribution	according to detector distribution	segmentation until physical resolution ~ 0,5m
expenses	cheap (25 €/piece + cable)	expensive !! (600 €/piece + cable)	cheap, 23 €/m + cable
references	S-Dalinac	Cebaf	SLAC

HZDR

Main disadvantage of photomultipliers: saturation effect at high current beam losses

Mitglied der Helmholtz-Gemeinschaft

Heliax radio frequency cable

Dump Curr. DCM7 -5.8 UA Room 114 DCM FL2-FEL CB.01 Room 123 DCM BLM 1 **BLM 16** BLM22 FEL 1 DCM BLM10 BLM21 **BLM 11** BLM DCM 9 DCM Dump Curr. DCM9 -0.9 µA BLM9 ----- DCM 10 Room 111b BLM20 DCM 8 Room 111a -----DCM 16 BLM8 DCM 1 **DCM 13** DCM BLM 1 BLM4 BLM1 DCM IN1 Linac 2 BLM1 **DCM 17** DCM -DCM4 BLM14 Dump Curr. DCM4 DCM 3 ET1-CB.0 IN2 DCM -0.3 µA BLM : R. 1110 BLM2 BLM. BL M13 DCM11 DCM DCM Dump Curr. DCM11 BLM 6 NP-CB.01 DCM Dump Curr. DCM6 -3.5 µA -1185.1 µA Dump Curr. DCM2 -6.1 UA BL DCM 5 DCM 6 R 109 Room 112

23 BLM cables used at ELBE (2011)

typical length is 3 - 5 m

fast interlock, ~2 ms

HZDR

concept

HZDR

Machine Protection System

Machine Protection System

signal splitter ZN2PD-20 mini-circuits

 $\lambda/4$ stripline detector

co-use: DCM and BPM

Differential Current Measurement (DCM)

if difference is larger then set here \rightarrow beam is shut off

signal proportional to beam current from position Z

Problems: -linearity over dynamic range -performance below 13 MHz micropulses

Machine Protection System

Mitglied der Helmholtz-Gemeinschaf

Jochen Teichert • j.teichert@hzdr.de • www.hzdr.de • HZDR

Mitglied der Helmholtz-Gemeinschaft

Since installation of the redundant beam loss monitor (BLM) & different current monitor (DCM) system ELBE has been without serious damage due device or operator failures.

But high radiation level due to CW operation:

- radiation from field emission in the SC cavities
- beam losses (halo, energy jitter & drift) in the dipole magnets
- settings are not perfect and unstable (RF phase drifts)
- beam alignment and setting optimization with high current (beam loss in OTR screens, need more sensitive cameras)
- high dark current from the SC RF photo gun

Consequences:

- more frequent high-voltage breakdown at thermionic injector
- more frequent damage in gun electronics
- damage of vacuum valves, cables, cameras and plastic parts

Present & Planned Upgrate

- Faster Response needed due to higher beam current: < 1 ms
- Improvement of the DCM electronics bunch charge 10 – 77 pC -> 10 – 1000 pC pulse frequency 13 MHz -> 125 kHz – 26 MHz
- More sensitive and improved local resolution of beam loss system for a better identification of sources and reduction of beam loss level.

Present & Planned Upgrate

Thank you for your attention

Thanks to my colleagues at ELBE and all collaborators. The ELBE Crew visiting the German Watch Museum Glashütte/Saxony December 2010

DEUTSCH