

Turn-by-Turn Monitor using Fast Gate Switches

Makoto Tobiyama

KEK Accelerator Laboratory

ERL2011

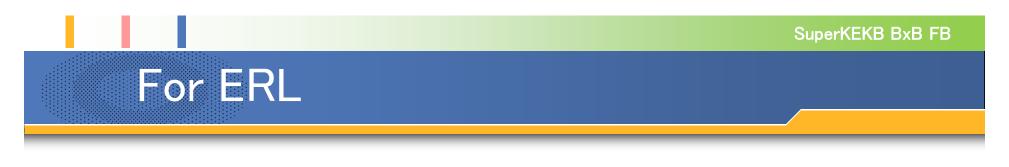
[SR Channel]

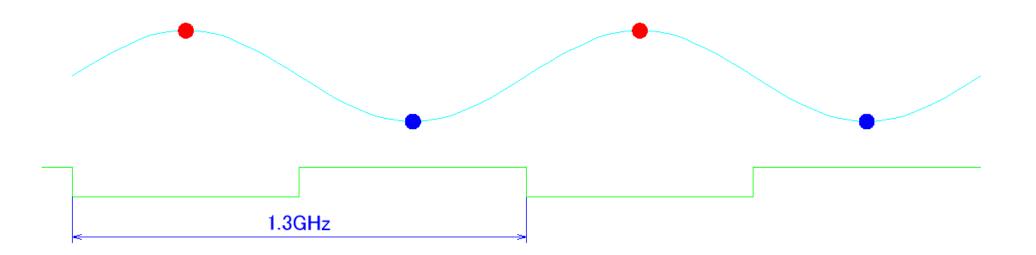
[Beam Channel]

SR

with nano-beam, double beam current

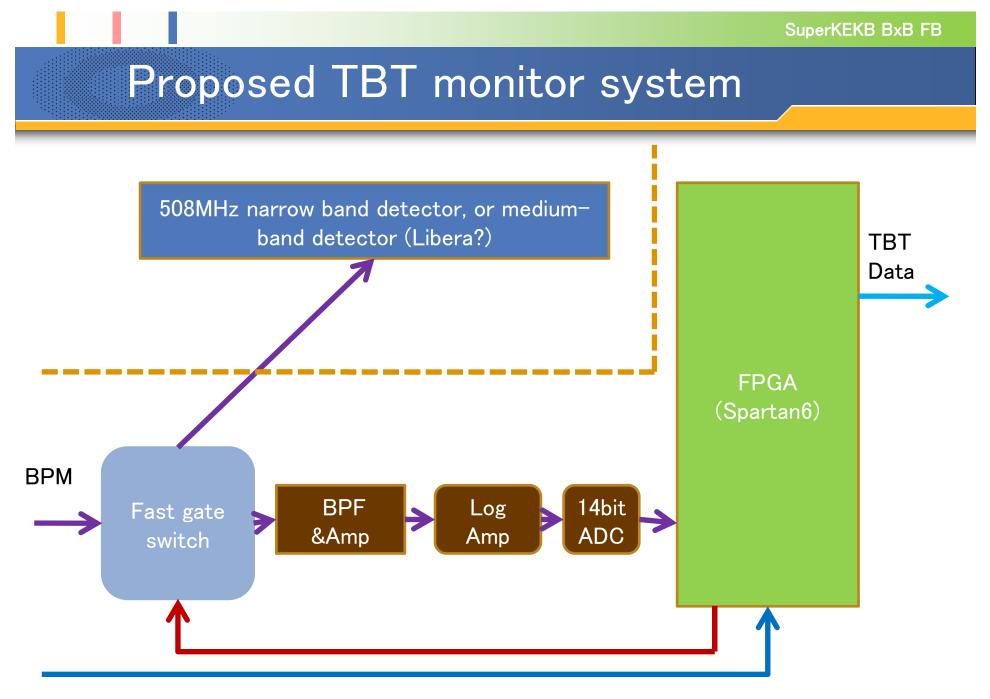
SuperKEKB project


- Operation point very near to strong resonance.
 - Need to control the betatron tune during collision
- Very narrow dynamic aperture due to huge chromaticity coming from collision point
 - Need to correct the optics
 - With low beam current (xy-coupling, betatron function, dispersion)
 - During collision (xy-coupling and betatron functin) under huge beam currents with fairly strong beam-beam effects.


 Prepare non-colliding, no-bxb feedback bunch ("Pilot bunch") and measure the betatron tunes and optics during collision.

Pilot bunch

<u>File E</u> dit Command	Window				12/12/2	008 09:31:49 Help
		ax: 1.01 mA Min:	.54 mA	Std: .02 mA		
1-1-1	·····	J	· · · · · · · · · · · · · · · · · · ·		······································	
	100	200		400	<u>1111111111111111111111111111111111111</u>	600
¹ 700		900		00	100	
1300	1400	1500		1700	1800	1900
		22		2300	. 2400	2500
2600	2700	28.00	2900			3200
3200	3300	34.00	. 3500	3600	3700	3800
3900	40.00		42	00	10000000000000000000000000000000000000	
4500	4600	4700	4800	4900	5000	5100
LER #	Bunch: 1585 Ma	ax: 1.08 mA Min:	.41 mA .1	Std: .03 mA	.05 Pilot: 1.00 r	nA
0- 	. 100	200	300	400		<u> </u>
0.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	800 11111111111111111111111111111111	<u>900 900 900 900</u>		00		
1-1300	1400	1500	1600	17.00	1800	1900
	11111111111111111111111111111111111111	21 <u>00 22</u>			2400	_2500
0.5=++++++++++++++++++++++++++++++++++++						
1 <u>-</u> 2600	2700	2800	2900	3000	31.00	<u>320</u> 0
	3300	3400	3500		3700	
0.5-++++++++++++++++++++++++++++++++++++						
1- 1 - 1		4100			300)0
^{0.5} <u>1</u>	4600	4700	4800	4900	5000	5100
4500	4000	4700	4000	4900	5000	5100
nch Current Monitor on 1	172.19.46.172:0.0					



 Separate the BPM signal form acceleration phase and deceleration phase at cavity section.

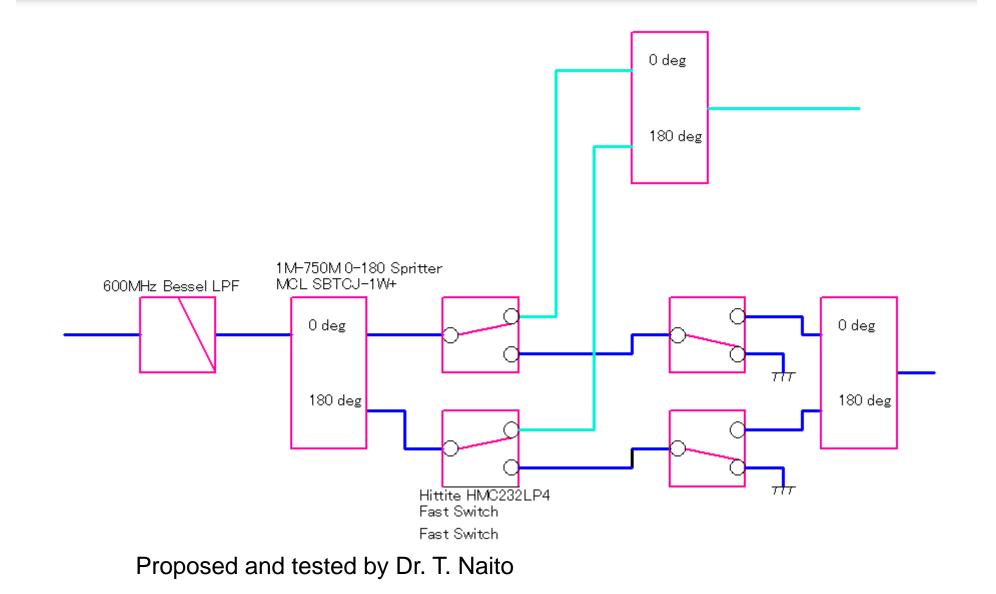
Turn-by-turn monitor

- Record the bunch position with turn-by-turn base.
 - FFT the position data
 - Betatron phase advance between the monitors.
 - X-Y coupling
 - Low frequency oscillations and their source.
- Need to share the same BPM signal with narrow-band or medium-band BPM detector.
 - Should not disturb the signal to narrowband system.

508.886MHz & FID

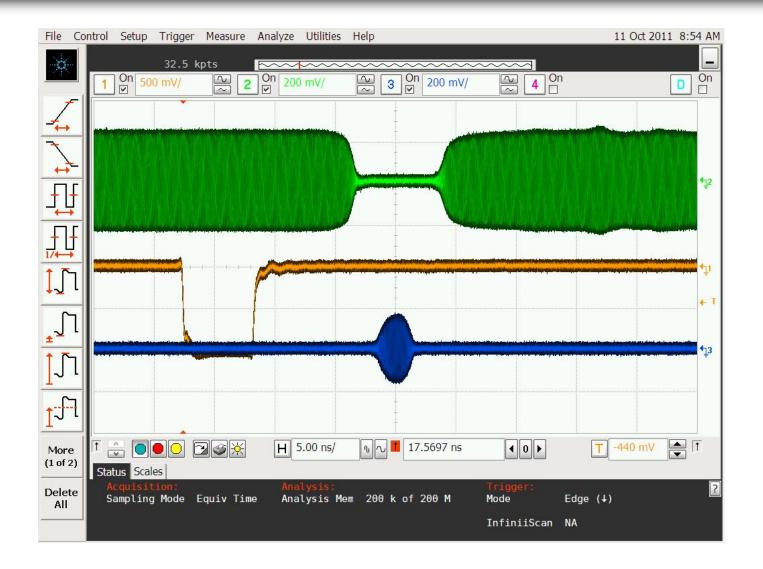

Gated optics measurements

- Excite betatron oscillation of pilot bunch (=non colliding bunch) with PLL
- Extract the signal of pilot bunch with fast beam switch , detect the signal with L/R detector to get the beam position of the pilot bunch, while most of the signal (2499/2500) is detected with narrow band COD detector.
 - FFT the signal to get the betatron phase advance.
 - Measure X-Y coupling
- Correct optics function, couplings with colliding condition.


Fast gate switch

	Hittite HMC234C8	Tyco SW-283-PIN	Mini-Circuit M3SW-2- 50DR+	Agilent HMMC- 2027	AVAGO AMMC- 2008
Input Power -1dB_c (dBm)	+26	+27	+25	+27	+14
Bandwidth (GHz)	DC - 8.0	DC - 3.0	DC - 4.5	DC - 26.5	DC - 50.0
Switching Time (ns)	3	2	5	< 1	0.1
Isolation (dB@2GHz)	52	25	50	55	46
Insertion Loss (dB@2GHz)	1.4	1.8	0.9	1.4	1.6
Control	0/-5 V	-8.5/+5 V	TTL	0/-10 V	0/-3.0 V

Switching noise



Better isolation and switching noise cancellation

Switching



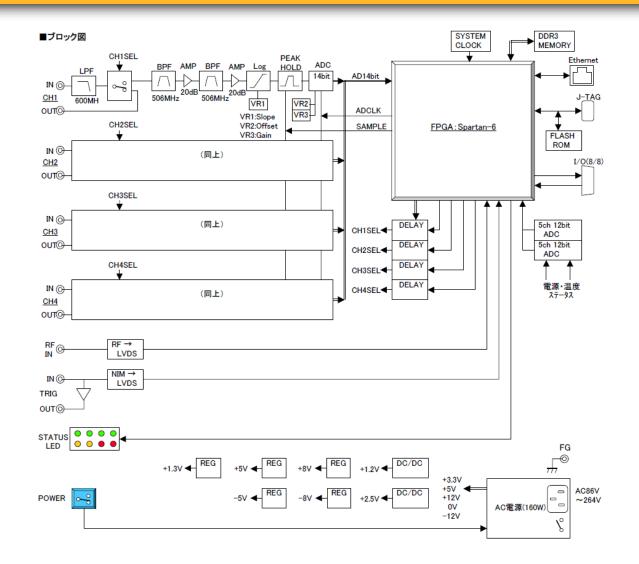
SW noise

RF to No.1 (SW off)

RF to No.1 (SW ON)

RF to No.2 (SW ON)

RF to No.2(SW OFF)



Circuit

Block Diagram

Log ratio detector

- 506MHz BW 24MHz SAW filter
- ADL5521 20dB Low noise amplifier x 2
- ADL5513 Log amplifier
- Peak-hold circuit
- ADS850 14bit 10MSPS BW 270MHz ADC

Digital control

Based on SP605 evaluation board

- Spartan-6 XC6SLX45T FPGA
- DDR3-1066 128M memory
- GbE and UART interface
- Timing control (508MHz /5120, delay (2ns step), fine delay tuning through EP195 (10ps step)) to fast gate SW
- Power and temperature monitor
- Using MicroBlaze to control and communicate.

For ERL application

Need better time-domain response for the monitor head.

- Difficulty in using stripline electrode
- Button electrode with improved time response?
- Need to use faster switch
 - There exist several candidates. Still existing difficulty in driving circuit, though.
- Symmetric structure in noise cancellation part might be needed that increases insertion loss.