DEVELOPMENT OF OPTICAL-FIBER BEAM-LOSS MONITOR

- Layout of Linac
- Cherenkov Light in Optical Fiber
- Wave Form of Beam Loss Monitor
- Beam Loss form AC_56 to BM_58_1
- Beam Loss of PF Line
- Field Emission of Accelerating Tube

Cherenkov Light in Optical Fiber

Light Speed in Optical Fiber = 5.0nsec/mUp = 8.3nsec/mBeam Speed of Electron= ~ 3.3 nsec/m1.7nsec/m

Layout of Acceleration Unit

A setting photograph of Optical Fiber@56-57-PBM(20110526)

A setting photograph of Optical Fiber@56-57-PBM(20101118)

Beam Transport Line for Photon Factory

Photograph of Optical Fiber

Photograph of Optical Fiber

Beam Loss Inside of BP_58_1

Observation of the Accelerating Tube field emission by the Optical Fiber (AC_56-AC_57-BP_58_1) @110623

A setting photograph of Optical Fiber
Field Emission of 3T-GUN and 3T
Field Emission of AC_32

Screen, Steering Magnet, Q-Magnet

Field Emission of AC_57

Screen, Steering Magnet, Q-Magnet

Field Emission of AC_55, AC_56

Screen, Steering Magnet, Q-Magnet

Photograph of AC_32_1 and AC_32_2

A setting photograph of Optical Fiber(AC_56-AC_57-BP_58_1)

AC_56-AC_57-BP_58_1@110526

The state

Field Emission of 3T-GUN and 3T@PF-mode

Field Emission of AC_32 (sx_32_3)

Field Emission of AC_32 (sy_32_3)

Field Emission of AC_32 (sx_33_1)

Field Emission of AC_32 (sy_33_1)

Field Emission of AC_32 (QD,QF_32_2)

これまでのまとめ

・BM_58_1上流に設置したファイバーで観測されるFEはAC_32のもの。

・3T-GUNのFEはBM_58_1に設置したファイバーでは確認出来ない。

sx_32_3の磁場の値によってRF中のピークが入れ替わる。
 sx_32_3の磁場の値(-2A~0.5A)の間でFEが確認される。
 sy_32_3の磁場による影響は0A(運転値)に対して対象。

sx_33_1の磁場の値によってRF中のピークが入れ替わる。
 sx_33_1の磁場の値(-4A~1A)の間でFEが確認される。
 sy_33_1の磁場による影響は0A(運転値)に対してほぼ対象。

•sx_32_1及びsy_32_1の磁場による影響は見られない。

・QD_32_2とQF_32_2の値によってRF中のピークが入れ替わる。

•AC_32のFEは第2加速管(AC_32_2)で発生している。

Photograph of AC_32_1 and AC_32_2

Input coupler

AC_32_1

Cut Model

AC_32_2

AC_32_1_r

ac_32_2 第1~4ディスクの写真

まとめ

- AC_32_1の入力側第1ディスク
 - アイリスの上流側に損傷が目立つ。
 - ビームが当った箇所が種になっている?
- AC_32_2の入力側第1ディスク
 - アイリスの下流側にも損傷は起きている。
 - 加速管下側に損傷が目立つ。
 - 第2、第3ディスクも加速管下側の損傷が目立つ。
- AC_32_1の出口側第1ディスク
 - 加速管下側に損傷が目立つ。
 - AC_32_2のフィールドエミッションの電子が種になっている?
- AC_32_2の出口側第1ディスク
 - カプラー出口側に多少損傷が多い。
 - AC_32_2の下流側はQマグネットである。

2011/6/14 日中 ロスモニタースタディ時のRF パラメータの差異

加速管のST-mag

	PF		AR		PFとAR で共通
	ACC/STB	φ	ACC/STB	φ	Es(kV)
KL_3T	ACC	186.2	ACC	186.2	31.38
KL_32	ACC	302.0	ACC	302.0	38
KL_33	ACC	190.0	ACC	190.0	40
KL_34	ACC	217.0	ACC	217.0	35
KL_35	ACC	273.5	ACC	273.5	42
KL_36	STB	60.9	ACC	60.9	38
KL_37	ACC	134.5	ACC	134.5	42
KL_38	ACC	371.5	ACC	371.5	42
KL_41	ACC	301.0	ACC	301.0	36
KL_42	ACC	203.5	ACC	203.5	41
KL_43	ACC	99.0	ACC	99.0	38
KL_44A	STB	354.0	STB	361.0	43
KL_44B	STB	337.0	STB	0.0	43
KL_45	ACC	220.0	ACC	220.0	42
KL_46	ACC	407.5	ACC	407.5	42
KL_47	ACC	320.0	ACC	320.0	42
KL_48	ACC	346.0	ACC	346.0	38
KL_51	ACC	152.4	ACC	168.9	35
KL_52	ACC	201.0	ACC	184.5	40
KL_53	ACC	226.0	ACC	226.0	42
KL_54	ACC	52.0	ACC	52.0	42
KL_55	STB	180.0	ACC	180.0	42
KL_56	STB	319.0	ACC	319.0	42
KL_57	STB	102.0	ACC	102.0	40

その他	PF	AR
Energy(knob)	2.6890GeV	3.1198GeV
SB_3 φ	100.0 degree	97.9 degree
SB_4 φ	100.0 degree	97.9 degree
SB_5 ϕ	100.0 degree	97.9 degree

PBM~PFラインファイバー敷設写真-1

Field Emission of 3T-GUN and 3T@PF-mode

3T-GUNのフィールドエミッション@PF-mode

 KL_32のEsを下げてFEが観測 出来ないところでGUN/HVを ON/OFFした。
 ・3T-GUNのFEはBM_58_1に 設置したファイバーでは 確認出来ない。

AC_32フィールドエミッションの変化(sx_32_3)

•sx_32_3の磁場の値によってRF中のピークが入れ替わる。_{Y.Yano ERL2011} •sx_32_3の磁場の値(-2A~0.5A)の間でFEが確認される。

・sy_32_3の磁場による影響は0A(運転値)に対してほぼ対象 XYano ERL2011

AC_32フィールドエミッションの変化(sy_32_3)

AC_32フィールドエミッションの変化(sx_33_1)

•sx 33 1の磁場の値(-4A~1A)の間でFEが確認される。

AC_32フィールドエミッションの変化(sy_33_1)

AC_32フィールドエミッションの変化(sx_32_1 & sy_32_1)

·sx_32_1及びsy_32_1の磁場による影響は見られない。

AC_32フィールドエミッションの変化(QD,QF_32_2)

・QD_32_2とQF_32_2を個別に変化させた場合運転値で最大波形が観測されるがピークが入れ替わる。 ・QD 32 2とQF 32 2を同時に変化させた場合電流値によってピークが入れ替わる。

これまでのまとめ

・BM_58_1上流に設置したファイバーで観測されるFEはAC_32のもの。

・3T-GUNのFEはBM_58_1に設置したファイバーでは確認出来ない。

sx_32_3の磁場の値によってRF中のピークが入れ替わる。
 sx_32_3の磁場の値(-2A~0.5A)の間でFEが確認される。
 sy_32_3の磁場による影響は0A(運転値)に対して対象。

sx_33_1の磁場の値によってRF中のピークが入れ替わる。
 sx_33_1の磁場の値(-4A~1A)の間でFEが確認される。
 sy_33_1の磁場による影響は0A(運転値)に対してほぼ対象。

•sx_32_1及びsy_32_1の磁場による影響は見られない。

・QD_32_2とQF_32_2の値によってRF中のピークが入れ替わる。

•AC_32のFEは第2加速管(AC_32_2)で発生している。

フィールドエミッションのEs依存性(5セクター)

AC_55のFEは観測されるが、AC_54~51のFEは運転値のEsでは観測されない。
 (AC_56,57は後述)

フィールドエミッションのEs依存性(4セクター)

・4セクターでは運転値のEsでFEは観測されない。

・3セクターでは運転値のEsはAC_32を除いてFEは観測されない。

52

フィールドエミッションのEs依存性(KL_32)

•AC_32はEs=~35kVからFEが観測される。

(Yano ERL2011

AC_56、57のFEは2山で後が鋭い、AC²⁵⁵のFEはRFの中心付近に1山である。

54

フィールドエミッション調査(3,4セクター)

・3,4セクターでFEが見られるのはAC_32である。

フィールドエミッション調査(3,4,5セクター)

調査方針;

- ・観測点はAC_56-57-BM_58_1に設置したファイバー。
- ・最下流(AC_57)からEsを運転値に設定して調査開始。
- ・FEが観測された場合Esを下げ、観測にかからないEs値に設定し上流に進む。

Es依存性;

- ・AC_55のFEは観測されるが、AC_54~51のFEは運転値のEsでは観測されない。
- ・4セクターでは運転値のEsでFEは観測されない。
- ・3セクターでは運転値のEsはAC_32を除いてFEは観測されない。
- •AC_32はEs=~35kVからFEが観測される。
- ・AC_34は上記調査の時FEが見られた様なので詳細に調査したが運転値(Es=~38kV) でFEは観測されない。

全セクター調査;

- ・5セクターでFEが見られるのはAC_55, 56, 57である。
- ・3,4セクターでFEが見られるのはAC_32である。
- AC_32、56、57のFEは2山で後が鋭い、AC_55のFEはRFの中心付近に1山である。

・運転状態でFEが観測されるのはAC_32,55,56,57である。

•sc_57_2を入れてもsx_57_1の値が0.7A~-1.1Aの間は後のピークのFEが確認される。

・前の山はAC_57_3 or AC_57_4、後のピークはAC_57_1から出ている。

•sx_57_1が運転値(3.2A)の場合sy_57_1を変えてもFEの変化は無い。

フィールドエミッション調査(AC 57)

sx_57_1(-0.3A)でFEが確認されている時はsy_57_1(-0.1A)を中心に対象に出る。
 sx_57_1(-0.3A)でFEが確認されている時SC_57_2を入れるとFEは弱まる。

フィールドエミッション調査(AC 57)

61

•sc 57 2を入れるとFEの後のピークが消える。 •sc 57 2/inでsx 57 3を変えてもFEの出方に変化は無い。 ・sx 57 1を0Aにすると後のピークが急激に成長する。(運転値=3.2A) ・sc 57 2を入れてもsx 57 1の値が0.7A~-1.1Aの間は後のピークのFEが確認される。 •sx_57_1が運転値(3.2A)の場合sy_57_1を変えてもFEの変化は無い。 •sx 57 1(-0.3A)でFEが確認されている時はsy 57 1(-0.1A)を中心に対象に出る。 •sx 57 1(-0.3A)でFEが確認されている時SC 57_2を入れるとFEは弱まる。 •sx_57_3(*A),sy_57_3(0A),sx_57_1(-0.3A),sy_57_1(0A),sc_57_2(out)の時 →sx 57 3(-5A)とsx 57 3(0A)のFEが目立つ。 •sy_57_3(*A),sx_57_3(0A),sx_57_1(-0.3A),sy_57_1(0A),sc_57_2(out)の時 →sx 57 3(-5A)とsx 57 3(0A)のFEが目立つ。 ・スクリーンの厚みは? •sx 57 1の設定を0Aではなく-0.3Aにした理由? ・PF-modeとAR-modeでsx,syの違いはあるか? ・前の山はAC 57 3 or AC 57 4、後のピークはAC_57_1から出ている。

•AC_57_1のFEは入力カプラー下部から出ている?

・AC_57に類似した2山のFEが観測される。

Es=38kV以上で観測される。

sc_55_2を入れるとFEは下がる。
 sc_55_2を入れた状態でsx_55_1, sy_55_1を変えてもFEの変化は無い。
 sc_55_2を抜いてsx_55_1を変えると(-1A)でFEが多くなる。
 sc_55_2を抜いてsy_55_1を変えると(0A)でFEが多くなる。

[・]sc_55_2を抜いてsy_55_3を変えると(OA)でFEが多くなる。

AC_56

AC_57に類似した2山のFEが観測される。
 Es=38kV以上で観測される。

AC_55

・AC_55で観測されるFEは1山である。

・sc_55_2を入れるとFEは下がる。

•sc_55_2を入れた状態でsx_55_1, sy_55_1を変えてもFEの変化は無い。
 •sc_55_2を抜いた状態でsx_55_1, sy_55_1を変えた場合は?

sc_55_2を抜いてsx_55_1を変えると(-1A)でFEが多くなる。
 sc_55_2を抜いてsy_55_1を変えると(0A)でFEが多くなる。
 sc_55_2を抜いてsx_55_3を変えると(-0.3A)でFEが多くなる。
 sc_55_2を抜いてsy_55_3を変えると(0A)でFEが多くなる。
 sxを振ってもAC_32及びAC_57で観測された様なピークは現れない。

66

まとめ

•AC_32のFEは第2加速管(AC_32_2)で発生している。

・運転状態でFEが観測されるのはAC_32, 55, 56, 57である。

AC_57のFEは第1加速管(AC_57_1)で発生している。
 (入力カプラー下部から出ている?)