SACLA Design and Performance of the Synchronization System for SACLA

SPring 8

H. Maesaka^{1,2}, N. Hosoda², S. Matsubara²,
T. Ohshima^{1,2}, Y. Otake^{1,2}
1: RIKEN SPring-8 Center
2: JASRI / SPring-8

Outline

- Overview of SACLA
- Optical RF transmission system
 - Master oscillator
 - E/O and O/E converter
 - Fiber length stabilization
- Low-level RF control system
 - IQ modulator and demodulator
 - High-speed waveform generator (D/A) and detector (A/D)
- Suppression of temperature drift and power supply noise
 - Water-cooled 19-inch rack
 - Water-cooled optical fiber duct
 - Low-noise DC power supply
- Possible application to ERL
- Summary

2011/10/20

Overview of SACLA

- 8GeV linear accelerator
 - 238 MHz, 476 MHz, L-band (1428 MHz), S-band (2856 MHz) and C-band (5712 MHz)
- Bunch compression
 - Velocity bunching in the low energy region
 - Three bunch compressors
 - Bunch length: 1 ns \rightarrow 30 fs (FWHM)
 - Peak current: 1 A → 3 kA
- Coherent X-rays are generated by in-vacuum undulators.

XFEL Performance

- Laser power amplification at wavelengths from 1.6 to 0.8 Angstroms
 - Maximum laser power ~4 GW
- Intensity fluctuation ~18 %
- Laser being reproducible \diamondsuit
 - without beam feedback keeping the peak current
 - at ~25% of peak intensity

Requirements

- RF frequency: 5712, 2856, 1428, 476, 238 [MHz]
 Facility length: 700m
- Number of timing signal receivers: ~90
- Amplitude stability: 1x10⁻⁴ (rms)
- Phase stability: < 100fs (rms) (0.2deg. @ 5712MHz)
- For both accelerator and user

Synchronization System

- Optical RF and timing distribution system
 - Attenuation of an optical fiber is much smaller than a metal cable
- Low-level RF control system
 - IQ (In-phase and Quadrature) modulator and demodulator are employed to control the acceleration RF signal.

• E/O and O/E Converter

- E/O: LN Modulator (Sinusoidal modulation)
- O/E: Fast PIN Photodiode
- Wavelength Division Multiplexing (WDM)
 - To combine all signals to one fiber.
- Phase-stabilized optical fiber
 - Temperature coefficient: 2 ppm/K
- Water-cooled 19-inch rack and watercooled optical fiber duct
- To reduce the thermal drift of the RF phase and 2011/10/2amplitude

- Length-stabilized fiber link
 - Additionally prepared for the phase reference.
 - Michelson interferometer monitors the fiber length.
 - Fiber stretcher controls the fiber length.
 - Time drift of the WDM fiber is controlled at the receiver side.
 - Length stabilization system will be installed in the next year.

Master Oscillator

- 2856 MHz VCO is phase-locked to 100MHz OCXO and 10 MHz OCXO
 - Sub-harmonic signals are generated by frequency dividers.

Phase Noise after 400 m Optical Signal Transmission Time jitter is 10 fs level.

Optical Comb Generator

Optical Comb Generator

M.Kourogi, et al., Generation of Expanded Optical Frequency Combs, Edited by A.N Luiten, Frequency Measurements and Control, *Springer-Verlag Berlin Heidelberg*, 315-335 (2001). 2011/10/20

10

SSB noises of sinusoidal & comb signals before/after 500 m optical fiber signal transmission

Experiment of Fiber Length Control

Use the 1 km phase stabilized optical fiber cable settled along the circumference of the SPring-8 ring

Low-level RF Control System

- IQ modulator produces the acceleration RF signal (pulsed RF) with appropriate phase and amplitude.
- IQ demodulator detects the phase and amplitude of the acceleration RF.
- Baseband waveforms are processed by VME high-speed D/A and A/D converters.
 - Sampling rate: 238 MSPS
 - Resolution: 14 bits (D/A), 12 bits or 16 bits (A/D)
- Phase is regulated by feedback control process (<10Hz).
 - Amplitude is also regulated for the injector part.
- All modules are enclosed in a water-cooled 19-inch rack.

RF Waveform

 Waveforms of the RF amplitude and phase can be monitored in real time.

2011/10/20

accelerating signal beam induced signal Beam-induced field 0.01 (RF off) 0.008 0.8 0.006 0.6 Intensity[V] **RF** Amplitude Intensity[V] 0.004 0.4 Acceleration RF 0.002 0.2 0 2.5µs -0.002 -0.2 -3 -2 -1 0 time (us) beam induced signal **RF** Phase accelerating signal 180 90 0 -90 -180 -3 -2 0 -1 time (us)

RF Phase and Amplitude Stability

- RF stability measured by IQ-demodulator
- 238MHz Cavity: Amplitude 1.0 × 10⁻⁴, Phase 0.0067 deg. (79fs)
- 5712MHz Acc.: Amplitude 5.6 × 10⁻⁴, Phase 0.032 deg. (16fs)

RMS values of 10-shot moving average are plotted.

	Toler	ance	Measurement		
	Voltage	Phase	Voltage	Phase	
238 M SHB	0.01 %	0.01°	0.010 %	0.006°	
476 M Booster	0.01 %	0.02°	0.004 %	0.009°	
LB Correction	0.03 %	0.06°	0.02 %	0.02°	
L-Band APS 1	0.01 %	0.06°	0.06 %	0.03°	
L-Band APS 2	0.01 %	0.06°	0.03 %	0.05°	
C-Band Corr.	0.2 %	0.06°	0.06 %	0.05°	
S-Band acc. 1	0.01 %	0.1°	0.04 %	0.03°	
C-Band acc.1	0.01 %	0.2°	0.05 %	0.03°	

238 MHz Sub-harmonic Buncher

Water-cooled 19-inch Rack

- LLRF electronics are enclosed in water-cooled 19-inch racks.
- Circulating air is cooled by a heat exchanger.
- Temperature stability: 0.2 K (pk-pk)

Temperature Regulated Fiber Duct

- Optical fiber cables are installed into a temperature-stabilized and water-cooled duct.
- Temperature stability of the cable is within 0.2 K (pk-pk).

Optical Fiber Length Stability

Beam Arrival Time Monitor using BPM Reference Cavity

Low-noise DC Power Supply

- Linear regulator is employed
- Voltage stability of 24 V output.
 - Short term stability: 2 ppm pk-pk for 10 sec
 - Long term stability: 10 ppm pk-pk for 24 hr
 - FFT spectrum: noise floor ~ -140 dBV/ \sqrt{Hz}
 - Harmonics of line frequency: < -110 dBV

Possible Application to ERL

- Optical RF and Timing Distribution System
 - Some component can be applicable to ERL.
 - E/O and O/E converter
 - Fiber length control with Michelson interferometer
 - I think each ERL project has similar design.
 - Sinusoidal modulation is better than comb pulse modulation for the RF distribution
 - But, comb pulse is useful for cross-correlation
 - Synchronization with pump laser
 - Fiber length measurement
- Low-level RF Control System
 - Difficult.
 - Our IQ-mod/demod system is intended for pulsed RF signals and for normal conducting accelerators.
 - Need considerable modification for CW signal or superconducting accelerator.
 - Vector sum
 - Intra-pulse feedback

Summary

- Optical RF and Timing Distribution
 - Jitter: ~ 10 fs (from phase noise measurement)
 - Drift: 750 fs (pk-pk) for 400m cable → Fiber length controller will be installed.
- Low-level RF System
 - Acceleration RF signals are precisely generated and detected.
 - Phase stability of acceleration cavity: < 100 fs (rms)
- By using this system, stable x-ray lasing was achieved at SACLA.
- Some of our instruments can be applied to ERL.

Thank you for your attention.

X-ray FEL Project at SPring-8

- X-ray wavelength: < 0.1 nm
- Self-amplified spontaneous emission (SASE) process
- Beam energy: 8 GeV
- Key technologies
 - Low-emittance thermionic electron gun: 0.6 mm mrad
 - High-gradient C-band accelerator: 35 MV/m
 - Short-period in-vacuum undulator: $\lambda_u = 18$ mm, K < 2.2

SACLA System Overview

2011/10/20

XFEL Machine Parameters

Beam Energy	8 GeV			
Bunch Charge	0.3 nC			
Normalized Slice Emittance	0.7 π mm mrad			
Repetition Rate	60 pps maximum			
Peak Current	3 kA			
Bunch Length	30 fs (FWHM)			
Beam Radius	40 μm (RMS)			
Undulator Period	18 mm			
Undulator K-value	2.2 maximum			
Undulator Gap	3 mm minimum			
Number of Periods	275 x 18 = 4950			

3. Shortening Laser Wavelength

2011/10/20

6. Spatial Profile

Photon energy: 10 keV 110 m from exit of ID18

2011/10/20

7. Focused Laser Beam

Focused down to 1.1 µm x 0.9 µm (FWHM)

Ablation pattern by focused XFEL on gold-deposited film

Collaboration with Osaka Univ. (Prof. Yamauchi) and Univ. Tokyo (Prof. Mimura) (MEXT「X線自由電子レーザー 利用推進研究課題」/ RIKEN 「SACLA利用装置提案課題」)

Fiber Optical Length Control (Nichelson Interferometer)

E.G. Phase-stabilized optical fiber has a thermal optical length coefficient of 2 ppm/K. The optical length of the fiber moves 1.6 μ m/K for 800m. This values corresponds to a phase shift of 1 deg./K and 500 fs/K at 5712 MHz, and is not acceptable to employ this method for the X-FEL.

PSK trigger pulse transmission using optical fiber

Rf Phase and Amplitude Stability of Injector

10 shots average at the individual data points.

		SHB	Booster	L-corr	L-APS_1	L-APS_2	C-corr
Tolerance	Voltage	0.01%	0.01%	0.03%	0.01%	0.01%	0.1%
	Phase	0.01°	0.02°	0.06°	0.06°	0.06°	0.06°
Measurement	Voltage	0.006%	0.005%	0.019%	0.044%	0.052%	0.093%
	Phase	0.007°	0.011°	0.021°	0.048°	0.057°	0.081°

RF Cavity BPM

- Beam-induced RF field is used.
 - Beam position is obtained from TM110 dipole mode cavity.
 - TM010 cavity determines the phase reference and the beam charge.
- Resonant frequency: 4.760 GHz (C-band)

BPM Electronics

IQ demodulator

- Attenuator switch extends the dynamic range to 100 dB
 - From sub-µm to a few mm
- Baseband signals are recorded by a 12-bit or 16-bit VME waveform digitizer.

Beam Arrival Time jitter observed by the rf deflector

